

Industry requirements for undercover exploration A geophysical perspective

Charles Funk – Senior Geologist

Geophysics role.

The extent of the challenge.

Two approaches

- Direct detection
- Weights of evidence
 - Regional scale
 - Tenement scale

Mapping the unconformity

Seismic in hard rock environments

The challenge

The challenge

The challenge

• 400-600m of transported cover

200m spaced gravity survey

 Has a fundamental advantage over other geological observations as it is the only method that remotely senses rock properties.

 Physical rock properties need to be interpreted within a geological framework to be useful.

• A much more **cost effective** method to map beneath the surface than drilling.

• Downsides principally due to decreasing resolution as depth increases. Also at best rock properties can only act as a proxy for assay results

Depth of cover for GOLD discoveries in the World: 1900-2013

Depth of Cover (Metres)

Note: Primary gold deposits > 0.1 Moz. Bubble size refers to Moz of pre-mined Resource Excludes satellite deposits within existing Camps.

Depth of cover for BASE METAL discoveries in the World: 1900-2013

Depth of Cover (Metres)

Note: Primary Cu, Zn, Pb and Ni deposits > 0.1 Mt Cu-equivalent Bubble size refers to Mt Cu-eq of pre-mined Resource, as calculated using the average metal price for 2011-2013 Excludes satellite deposits within existing Camps. Excludes nickel laterite deposits

Source: MinEx Consulting © November 2013

Weights of evidence

Most discovery's involve the combination of geology, geochemistry, structural mapping and geophysics.

Direct detection and weights of evidence 41/6500E #150007

64105001

MINOUN

MODECING

- Direct detection of orebodies from geophysical data
 - Density (Olympic Dam, Prominent Hill)
 - Magnetics (Cannington, Ernest Henry)
 - Electrical Methods (Nova, Mallee Bull)

41550CE

£10000F

4165005

4170008

- Industry needs improved equipment that increases resolution at depth, covers more area and does so cheaply.
 - Larger 3D IP arrays with greater sensitivity.
 - Lower frequencies in AEM data.
 - Cheaper hard rock seismic
- More knowledge to interpret the data all ready collected
 - Better interpretation/processing of airborne gravity gradient data.
 - Improved AEM inversion. Integrated and constrained inversion.
 - More published, modern examples of orebody signatures.

Direct detection

Weights of evidence

Regional Scale

- Government has a strong record of success here - regional gravity and magnetics, seismic traverses, some AEM surveys, etc.
- Industry uses this data to define metallogenic belts undercover – map greenstones, accreted porphyry arcs, uranium sources and traps, etc.
- Next step to support industry is to map the unconformity above prospective basement.

Carriewerloo Basin – DMITRE

Weights of evidence

Tenement Scale

- Structural interpretation from geophysical datasets.
 - Greenstone belt faults.
 - Basin margins, etc.
- Coincident geochemical and geophysical anomalies.
- Informs geological models.
- Mapping of the unconformity at high resolution.
 - Corrects geophysical models.
 - Improves geochemical cover modelling

Mapping the unconformity

Carrapateena – Cover depth

Carrapateena – Residual gravity

Carrapateena – Basement corrected residual gravity

Mapping the unconformity

Olympic Dam (Ehrig et al., 2013)

Line D, migrated stack overlain on model

Line D 350m cover, migrated stack

Considerations

- Surveys that cover larger areas with greater resolution.
- Knowledge to improve interpretation of the existing data.
- Government can support by mapping unconformity surface at large scales.
- Improve on existing links between Industry, Universities and Government to attempt new science.
- Hard rock seismic can be the next breakthrough tool for minerals exploration.

- Thankyou to;
 - Newcrest Mining for permission to attend and present.
 - Particular thankyou to OZ Minerals for the opportunities to work on and for permission to present the Carrapateena and Prominent Hill case studies.
 - To Richard Schodde, MinEx Consulting, for his slides and allowing their reproduction.
 - To Don Pridmore, HiSeis, for the presentation of the modelling results over Olympic Dam.
 - And most importantly, for your interest.