

Australian Government

Geoscience Australia

Australia's lithospheric architecture: imaging for under cover mineral discovery

Richard Blewett

Group Leader: Mineral Systems Group

Acknowledgements:

Roger Skirrow, Dave Champion, Brian Kennett, Dave Huston, George Gibson, Karol Czarnota, Richard Chopping, Helen Dulfer, Terry Brennan, Russell Korsch, Michael Doublier, Peter Milligan, Patrice de Caritat, Jon Cloaue-Long, John Wilford, Tristan Kemp

The 6 blind men and the elephant

- Multiple views via geophysics (mag, grav, velocity, resistivity), geochem and geology
- Each method, like the 6 blind men, sees the earth differently
- We are imaging one earth
- How to make sense of these different views?
- The key is integration

Poem by John Godfrey Saxe, cartoon by G. Renee Guzlas

Point of view

- Architecture (structure) is a key ingredient of mineral systems thinking
- Can map (or infer) architecture from integration of geology, geophysics, geochemistry, geochronology,
- From architecture we can infer something about:
 - Geodynamic processes
 - Source (metals-fluids)
 - Pathways and depositional sites
- Australia enriched in world-class data
- Fantastic opportunity to use mineral system thinking to make informed predictions about under cover resources in Australia

Why are deep/big structures important?

- Pathways for enormous energy and mass fluxes needed to form a giant?
- Proximity to deep structures considered by many as favourable for area selection
- How can we map them?
- What is their preservation potential?
- Nature of connectedness of crust and mantle?
- Does this matter anyway?

Lithosphere: what is it?

GEOSCIENCE AUSTRALIA © Commonwealth of Australia (Geoscience Australia) 2013

Lithosphere-asthenosphere – LAB – depth in km

Milligan

Shear wave velocity (Vs) slice at 250 km

Commonwealth of Australia

Geoscience Australia) 2013

Milligan

Shear wave velocity (Vs) slice at 250 km

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013 Milligan

Shear wave velocity (Vs) slice at 200 km

Commonwealth of Australia

eoscience Australia) 2013

Milligan

Shear wave velocity (Vs) slice at 200 km

Milligan

GEOSCIENCE AUSTRALIA

Shear wave velocity (Vs) slice at 100 km

Milligan

GEOSCIENCE AUSTRALIA

Shear wave velocity (Vs) slice at 100 km

Milligan

GEOSCIENCE AUSTRALIA

Velocity slices of mantle lithosphere

- Are these products providing useful 'boundaries'?
- What is their resolution?
- How robust are the models?

- When did they form?
- Preserved old ones?
- Reworked younger ones?
- Timing re mineralisation??

AusLAMP: National long-period magnetotellurics

- Programme commenced
- Half degree grid spacing (~55 km) across continent
- Long-period instrument deployment one month approx.
- Map to base of lithosphere

Magnetotellurics: mapping SCLM architecture

Commonwealth of Austral (Geoscience Australia) 2013

The Moho

Source: AusMoho, Kennett et al. (2011)

Public-domain seismic reflection coverage in Australia

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013 Czarnota, 2014

The seismic Moho and seismic provinces

- Moho character highly variable (sharp to diffuse = crust/mantle velocity contrast
- Moho topography variable (steps and 'dangles')
- Lower crust highly variable seismic provinces don't see surface
- Can map the major domain boundaries (Korsch and Doublier, 2014)

Seismic provinces and crustal domain boundaries

- Mapped all crustal penetrating structures
- Structures bounding seismic domains
- Extrapolated with mag-gravgeo

Korsch & Doublier, 2014

Seismic provinces and crustal domain boundaries

- This seismic crustal fabric sits on a SCLM fabric (eg. 100 km Vs slice)
- Boundaries match in places, highly oblique in others
- How does the 3D lithospheric jigsaw fit together through time?

Korsch & Doublier, 2014

Towards a 3D crustal architecture map

Selection of regional 3D maps to be integrated in Korsch-Doublier framework

Plan to link with offshore maps too

T Brennan

GEOSCIENCE AUSTRALIA

Crustal boundaries and mafic-ultramafic mineral systems

Can start to look at the crustal boundaries and location (at surface) of deposits

Note it is a 3D problem

This map <u>not</u> all major faults

Crustal boundaries with nickel (PGE, Cu, Cr, V) deposits and occurrences

GEOSCIENCE AUSTRALIA

Seismic velocity mapping lower crustal mafic 'underplate'

- AusREM velocity model (Kennett)
- Refraction, receiver function & ambient noise – map cumulative thickness >7.1 m/s above Moho
- Mafic underplate in lower crusr?
- What age?
- Encircles cratons
- LIP Magma flux for Ni systems?

Czarnota, 2014

OZCHEM whole-rock geochemistry – mafic, ultramafic and alkaline rocks

Linking mafic-ultramafic chemistry to 'underplate'

- Work in progress to link LIPs with architecture
- Favourable zones on edge of underplate?
- Eg West Kimberley

Skirrow, Champion & Czarnota

GEOSCIENCE AUSTRALIA

Geoscience Australia) 2013

Supercomputer calculation of variable RTP TMI

- Improved RTP that accounts for latitude
- Run on top 50 computer in world
- Full dataset
- We are familiar with these patterns, what depth info can we get?

Milligan, 2014

(Curie) depth of magnetisation

- Depth to bottom of magnetisation
- Curie temperature 670°C
- Deeper than Moho in Curnamona, Yilgarn, Cape York, New England??
 - Heatflow?
 - And/or major boundaries between different mid and lower crustal (mag) domains?

Chopping, 2014

Big boundaries in crustal age (Sm-Nd)

Big boundaries in crustal age (Pb)

Huston et al. 2013

Gravity: 25 km upward continued

- A different view to magnetics
- Deeper lithospheric keel in western 2/3rds of the continent?
- Used to make a deep crust interpretation

Milligan, 2012

Lithospheric Elements and surface geochemistry??

- Deep crust/ upper mantle sutures and lineaments
- Continental-scale geophysical (gravity) datasets
- Extend from the continent into the ocean to cover whole of plate
- Integrate with surface geochem (NGSA)

Claoué-Long in prep

Commonwealth of Australi (Geoscience Australia) 2013

Probability of NGSA samples map 'deep' Yilgarn?

GEOSCIENCE AUSTRALIA

Geoscience Australia) 2013

Probability of NGSA samples map 'deep' Arunta?

Probability of NGSA samples map 'deep' E Australia

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Conclusions

- Architecture (structure) is a key ingredient of mineral systems thinking
- We are 6 blind men, but we do have more senses than touch
- Have plenty of structure, but which ones have the goodies?
- Need to integrate these elements into <u>mineral systems</u> <u>thinking</u>....
- through time and in 3D space at a range of scales
- Fantastic opportunity with the great data to make informed predictions about under cover resources in Australia
- Science Excellence is imperative

Australian Government

Geoscience Australia

Thank you

Dr Richard Blewett <u>richard.blewett@ga.gov.au</u>

Group Leader: Mineral Systems

Geoscience Australia

APPLYING GEOSCIENCE TO AUSTRALIA'S MOST IMPORTANT CHALLENGES

