Supplementary Material

Angus McEwan 1937–2018

Trevor J. McDougall^{A,*}, John A. Church^B and John Zillman^C

^ASchool of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

^BClimate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia

^CBureau of Meteorology, Docklands, Vic 3008, Australia

*Correspondence to: Email: <u>Trevor.McDougall@unsw.edu.au</u>

1 Bibliography

- 2 McEwan, A. D., Finney, J. M. and Mann, J. Y. (1958) An hydraulic random load fatigue test rig for
- 3 simple specimens, Dept. of Supply, Aeronautical Research Laboratories, Note ARL/SM245.
- 4 McEwan, A. D. and Joubert, P. N. (1962) A Simple Means of Measuring Vortex Strength, and the
- 5 Performance of Triangular Ramp-Type Vortex Generators in a Uniform Velocity Field. The
- 6 Aeronautical Journal, **66**(624), 783–785.
- 7 Taylor, G. I. and McEwan, A. D. (1965) The stability of a horizontal fluid interface in a vertical electric
- 8 field. Journal of Fluid Mechanics, 22(1), 1–15.
- 9 McEwan, A. D. (1966) The peeling of a flexible strip attached by a cavitating viscous adhesive.
- 10 Rheologica Acta, 5(3), 205–211.
- 11 McEwan, A. D. and Taylor, G. I. (1966) The peeling of a flexible strip attached by a viscous
- adhesive. *Journal of fluid mechanics*, **26**(1), 1–15.
- 13 McEwan, A. D. (1970) Inertial oscillations in a rotating fluid cylinder. *Journal of Fluid Mechanics*,
- **40**(3), 603–640.
- McEwan, A. D. (1971) Degeneration of resonantly-excited standing internal gravity waves. *Journal of*
- 16 Fluid Mechanics, **50**(3), 431–448.
- 17 McEwan, A. D., Mander, D. W. and Smith, R. K. (1972) Forced resonant second-order interaction
- between damped internal waves. *Journal of Fluid Mechanics*, **55**(4), 589–608.
- 19 McEwan, A. D. (1973) A laboratory demonstration of angular momentum mixing. Geophysical Fluid
- 20 Dynamics, **5**(1), 283–311.
- 21 McEwan, A. D. (1973) Interactions between internal gravity waves and their traumatic effect on a
- continuous stratification. *Boundary-layer meteorology*, **5**(1-2), 159–175.
- 23 McEwan, A. D. and Baines, P. G. (1974) Shear fronts and an experimental stratified shear flow.
- 24 Journal of Fluid Mechanics, **63**(2), 257–272.
- 25 McEwan, A. D. and Robinson, R. M. (1975) Parametric instability of internal gravity waves. Journal of
- 26 Fluid Mechanics, **67**(4), 667–687.
- Robinson, R. M. and McEwan, A. D. (1975) Instability of a periodic boundary layer in a stratified fluid.
- Journal of Fluid Mechanics, 68(1), 41–48.
- 29 McEwan, A. D. (1976) Angular momentum diffusion and the initiation of cyclones. *Nature*, **260**(5547),
- 30 126–128.
- 31 McEwan, A. D. and Paltridge, G. W. (1976) Radiatively driven thermal convection bounded by an
- 32 inversion—A laboratory simulation of stratus clouds. Journal of Geophysical Research, 81(6), 1095–
- 33 1102.
- 34 McEwan, A. D. and Plumb, R. A. (1977) Off-resonant amplification of finite internal wave packets.
- 35 Dynamics of atmospheres and oceans, **2**(1), 83–105.
- Plumb, R. A. and McEwan, A. D. (1978) The instability of a forced standing wave in a viscous
- 37 stratified fluid: A laboratory analogue of. the quasi-biennial oscillation. Journal of Atmospheric
- 38 Sciences, 35(10), 1827–1839.
- 39 McEwan, A. D. Thompson, R. O., and Plumb, R. A. (1980) Mean flows driven by weak eddies in
- rotating systems. *Journal of Fluid Mechanics*, **99**(3), 655–672.

- 41 McEwan, A. D. (1983) Internal mixing in stratified fluids. *Journal of Fluid Mechanics*, **128**, 59–80.
- 42 McEwan, A. D. (1983) The kinematics of stratified mixing through internal wave-breaking. *Journal of*
- 43 Fluid Mechanics, **128**, 47–57.

46

47

- Reichelt, R. E. and McEwan, A. D. (1999) Australia's marine science and technology plan: an action
- 45 plan for Australia's Oceans Policy. Marine and Freshwater Research, **50**(8), 711–716.

Dr Angus McEwan and his "rotating table" at the CSIRO Aspendale laboratory, around 1980. Fluid experiments are performed on such rotating tables in order to simulate the effects of the rotation of planet earth on fluid motions.

Dr Angus McEwan during an Open Day at the CSIRO Marine Labs in 1991.

Angus McEwan on receiving the Centenary Medal in February 2003.