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1. Education and Career
Christopher John Ash was born on
5 January 1945 at Gorleston, a seaside town
adjoining Great Yarmouth, Norfolk,
England. He was an only child. His father,
Kenneth William Ash, was the middle of
three brothers. The elder brother was a
Wing Commander in the Royal Air Force
who worked on rocket research and the
younger was a Captain in the Merchant
Navy. Chris’s father was Borough Engineer
at Redcar on the North Yorkshire coast. His
mother was Joan Evelyn Hadley, who
worked at a Quaker school. Chris’s paternal
grandfather was Headmaster of Middle-
sborough High School.

After starting school at Wilton House
School, Redditch, near Birmingham he
continued at Newcomen Primary School,
Redcar, in 1953. At Redcar he joined the St.
Peter’s Church choir, whose choirmaster
was his music master from school. He loved
the dressing up and the ceremony of church
services. He lamented that when his voice
broke he ‘was left with a rather feeble and
inadequate tenor voice’ – a dubious asser-
tion at best.  Continuing his musical
interests, he learnt to play violin, piano and
cello, to which he later added recorders,
clarinet and bassoon. Later still viola and
tenor horn joined that impressive list. His
love of music continued throughout his life.

From 1955 he attended Sir William
Turner’s School at Coatham, North York-
shire. He had taken the ‘eleven-plus’
examination a year early, as many bright
children did, and he had the opportunity to
become a boarder at York Minster Choir
School. However, his parents decided,
against Chris’s desires, to keep him at home.

In his first form in high-school, he was
in the top two or three of his class of thirty.

His English master in April 1956, his first
year of high-school, commented ‘he must be
careful of the inexact use of words’ – a
recommendation which seems to have had
effect, for Chris loved the exact use of words
– in English or other languages – and he
used words well.

When it came to entering the Sixth Form,
he had to decide between Classics and
Science. He certainly read and enjoyed
classical literature, Greek and other, all his
life, and enjoyed translating or debating
Latin epithets. But he opted for Science as
‘more realistic’. He was surprised when his
headmaster advised him to drop Chemistry
and do Further Mathematics. However,
Chris did hold his mathematics master,
L. Page, in high regard and he followed the
advice. For Pure Mathematics, in his
penultimate year in high school, his other
mathematics teacher wrote: ‘He has the
ability and knowledge to be very successful,
but he must guard against careless errors’.
This comment apparently did not need
repeating, as subsequently Chris was very
careful.

Encouraged by his school he got a place
at St Edmund Hall, Oxford and a State
Scholarship. His undergraduate career in
mathematics was undistinguished. He got
a Second¶ in Mathematics Finals, which was
a disappointment to him, but it appears that
he did not get much pleasure from the
mathematics there. ‘The only lectures I
enjoyed were those of Ken Gravett in Set
Theory’, he has reported. Contemporaries
in general would have regarded Gravett’s
as the most entertaining and stimulating
of all their lectures.

Singing flourished and, having sung in
various choirs, Chris became a member of
Schola Cantorum Oxoniense. This small
group went on overseas tours including one
to Italy and made at least one commercial
record with Chris singing.

In 1966, he was awarded a (U.K.) Science
Research Council award to do graduate
study. By that time, Mathematical Logic
was his preferred area of study. The subject
had only recently been admitted into the

¶ In Oxford the second class was not then
divided into A and B.
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advanced section (Part II) of the Final
Examinations in Mathematics, but there
was interest in the subject in Oxford, and
it was increasing particularly among the
mathematicians, with some philosophers
contributing.

At that time graduate students first
completed a Diploma in Advanced Math-
ematics (now renamed an MPhil degree).
Ash worked under John Crossley, writing
‘A dissertation on constructive ordinals’.
The importance of this enterprise for his
future work is today apparent.

Ordinals are numbers which correspond
to putting objects in order. Traditionally
they are called ‘first’, ‘second’, ‘third’, etc.
in English, but written simply as 1, 2, 3,
etc… The sequence can be continued into
the transfinite and extended to 1, 2, 3, …, ω
the first infinite ordinal.  After this,
following the nineteenth-century notation
of Cantor, one progresses to ω +1, ω + 2, …,
ω + ω (which is written, awkwardly, as
ω ⋅ 2),  ω ⋅ 2 + 1, …, ω ⋅ 3, …, ω ⋅ n  ( for
arbitrary finite n), ω ⋅ ω (written ω2) and
continues further through ωn (n finite), then
ωω. After this come generalized polynomials
in ω, including ωωω ⋅ 2 + ωω ⋅ 3, for example.
The generating processes for larger ordinals
may be less apparent. However, the coll-
ection of ordinals is unending. ‘Constructive
ordinals’ are those for which one can give a
name, or ‘notation’, which encodes the
construction process. There are different
ways of presenting constructive ordinals
(see e.g. Kleene [Kl], Markwald [Md]), but
the actual ordinals notated are the same.
The constructive ordinals play a fund-
amental rôle in all of Ash’s subsequent work
in logic.

There is another noteworthy aspect of
Ash’s diploma dissertation. While most
students at this stage seem content to
understand others’ proofs and explanations,
Ash reworked everything. Chris always
liked to be told what a theorem said and
then to work out its proof for himself. This
practice gave him a very deep under-
standing and enabled him to write up his
work in an exceptionally clear fashion. This
took a lot of work, but it also developed his
insight and command.

In the 1960s, set theory, recursion theory
and model theory were all rapidly becoming
more sophisticated. In set theory, Cohen
[Co] developed his method of forcing to
prove the independence of the Axiom of
Choice and the Continuum Hypothesis from
the basic axioms of set theory. In recursion

theory, the ‘priority method’ was being
extended and applied widely, in particular,
by Shoenfield [Sho] and Sacks [Sa]. In model
theory, there were the notions of homo-
geneity  and saturation ,  developed by
Jónsson [J], and Morley and Vaught [M-V],
and there were beautiful results related to
‘categoricity ’, the deepest being due to
Morley [Mo]. C. Karp [Ka] and others were
investigating ‘infinitary’ logic, considering
infinite conjunctions and disjunctions.

Recursion theory is the branch of logic
dealing with computability and class-
ification of sets, especially sets of natural
numbers (or objects which can be coded by
natural numbers). A set is decidable, or
recursive, if there is an effective procedure
for deciding membership in it. A set is
recursively enumerable, or r.e., if there is an
effective procedure for listing (enumerating)
the elements. This method will be discussed
further in §3.

Model theory  concerns the relation
between mathematical structures (such as
orderings and fields) and formulae in a
mathematical language. The usual formulae
are finite, although in infinitary logic they
are allowed to be infinite. A sentence is a
formula in which all  variables are
introduced by quantifiers ‘for all’ or ‘there
exists’. A theory is the set of all sentences
(of the usual kind) true in some structure
or class of structures. The models of the
theory are the structures in which all
sentences of the theory are true. Many of
the early results in model theory were
related to computability questions. Tarski
[Ta] characterized the definable relations in
the field of complex numbers, and in the
field of real numbers, in the course of
proving that the theories of these fields are
decidable. By contrast, J. Robinson [Ro]
proved that the theory of the rational
number field is undecidable.

A theory with infinite models has models
of arbitrarily large cardinality – obviously
not all isomorphic. A theory is κ-categorical
if there is just one model of cardinality κ,
up to isomorphism. For example, the theory
of the rationals under the usual ordering is
ℵ0-categorical. The theory of vector spaces
over the field of rationals has infinitely
many countable models but is κ-categorical
for all uncountable κ. Morley’s Categoricity
Theorem says that for a countable theory
T, if T is κ-categorical for some uncountable κ,
then it is κ-categorical for all uncountable κ.

The group of academics in logic at Oxford
had interest in computability at least partly
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because of Graham Higman’s interest in the
word problem for groups [Hig]. Gravett’s
interest in set theory naturally led to an
interest in the constructive ordinals,
combining set theory with computability.
But model theory also seized the group’s
attention.

Ash was among a strong group of
graduate students in logic at Oxford. Their
interests were divided between model
theory and recursion theory and there was
a seminar covering topics from both areas.
Ash took some time choosing problems for
his PhD thesis. He had rejected a problem
suggested by Crossley, his supervisor. Much
later – in 1994 – he jokingly said that it had
been a mistake to reject the problem, for his
thesis took a long time to finish.

Ryll-Nardzewski [Ry] gave very simple
criteria for a theory to be ℵ0-categorical.
However, as a matter of historical fact it was
also the case that all the obvious theories
which were ℵ 0-categorical were also
decidable. It is easy to create an undecidable
ℵ0-categorical theory in a language with
infinitely many relation symbols.
Grzegorczyk [Gr] asked whether there was
a theory in a finite language with these
properties. Glassmire and Ash indep-
endently worked on this problem. Glassmire
[Gl] was the first to publish a solution but
Ash [1971] produced a construction ‘so
simple that I could describe it in abstract’.

This formed part I of Ash’s DPhil thesis.
Part II concerns a generalization of Boolean
algebras to n-valued Post algebras. The
work for Part II actually preceded that for
Part I, as it was felt that such structures
might lead to undecidable ℵ0-categorical
theories (in a finite language). In fact, they
are decidable in a strong sense [1972].

In 1969 Ash’s DPhil supervisor (Crossley)
moved to a Chair at Monash and Ash
obtained a Senior Teaching Fellowship in
Mathematics there. He continued work on
his thesis. However, Oxford, almost without
exception, requires a viva voce examination
in Oxford. Consequently, it was not until
1972 that Ash obtained his DPhil.* His
examiners were John Shepherdson (Bristol
University) and Robin Gandy (then at
Manchester University). In their report they
noted: ‘… a bare statement of [the main
results] does not give a fair idea of the
excellence of the thesis. Firstly the material
is beautifully presented – we have seldom

seen a dissertation which was so easy to
read. Secondly, the author always has
complete command of his material. When he
has occasion to reprove known results his
proofs are pithier and more transparent than
those in the literature. (This is particularly
true of Foster’s theorem about functionally
complete algebras; the original proof was
extremely hard to grasp). He picks out just
those results needed for his purpose; the
examples (see particularly section 6 of part
I) are happily chosen. Thirdly, he uses, with
evident understanding, a much wider range
of results and techniques than is usual in
DPhil theses. (In particular, Rabin’s
techniques for proving decidability – see [Ra]
– are not part of the standard equipment of
model theorists).

‘In his oral exam he gave an extremely
interesting account of the way in which the
work had developed. This made it plain that
the thesis had more coherence than might
be obvious at first sight; it grew from a well-
organised attack on the problem solved in
part I. He also confirmed the impression
given by the thesis that he was familiar with
all the work, cited or not, which was
connected with his own.’

On returning to Monash Ash was
promoted to a lectureship (in 1973). Within
a short time, two important influences had
begun to shape his research career. One was
a visitor. Chris subsequently wrote: ‘I was
greatly encouraged during this period by a
visit from Anil Nerode of Cornell
[University]. His apparently limitless store
of knowledge of Mathematical Logic set an
example for me which I have tried
(unsuccessfully) to follow.’ Most logicians
would dispute the bracketed word. Nerode
worked with Ash on some problems in what
was to become Ash’s primary research area.
Nerode, in the 1970s, was responsible for
getting a number of people interested in an
area of logic sometimes called recursive
model theory. A more descriptive name, for
much of the work, is computable structure
theory .  This was the title Ash used
consistently for his grant proposals.

The other important influence was the
great interest in the algebraic structures
called semigroups at Monash. Gordon
Preston, as Professor, and more especially
Tom Hall, as colleague, got Chris interested
in their work, and he eventually solved
several important problems on semigroups.

Ash’s results in algebra will be discussed
in §2. In addition to the results on semi-
groups, there are results in universal

* He took out his MA in 1970, but this is a
mere technicality and did not require a
thesis.
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algebra, a subject which sits between algebra
and model theory. Ash’s results in logic (after
the thesis) will be discussed in §3.

In a memorial booklet [Mem] Gordon
Preston wrote: ‘When he first arrived in
Australia, about 25 years ago, he was still
working on his PhD, a little unsure of him-
self both mathematically and personally. He
was modest and retiring but quickly opened
up and showed that he liked his new
environment. He made friends easily. I
remember him at parties playing the piano
for others to sing to and singing along
himself. I remember long conversations
with him and enjoyed his extensive
knowledge of English literature.

‘His mathematical talents developed
initially very slowly. He took a long time to
complete his PhD, partly because of his
desire for perfection. His first research
papers had a long gestation period, not just
to polish, but to improve arguments,
rearrange, and extend results. But in his
final development, from this slow start, he
became a major figure in world math-
ematics, with discoveries that will ensure
that he is always remembered.’

He was promoted to Senior Lecturer in
1981 and eventually to Reader in 1986. Not
long before he died he had been preparing
materials towards an application for a
personal Chair and these are the source of
several quotations in this article. More
importantly, they provide more insight into
his plans than casual conversations have
done.

During his career he had a number of
research students: David Billington (now
at University of Queensland), Ewan Barker
(University of Ballarat), John Love (Omeo,
Victoria) and Kevin Davey (now studying
at the University of California at Los
Angeles) who did Master ’s degrees and
Geoff Hird (currently at Odyssey Research
Associates, Ithaca, New York) who did a
PhD. All of these worked on aspects of
computable structures.

Chris Ash was a private man who became
more reclusive over the years. He had a
small number of partners over the years but
baulked at marriage. When he could be
inveigled into a social event such as lunch
or dinner he was always entertaining. If he
could be persuaded to play the piano – or
any other instrument, it seemed – he
demonstrated a talent and great love for
music. In possibly the last photograph taken
of him, he is playing a piano duet with Alan
Robinson (Syracuse University).

Ash’s career in the Department of
Mathematics centred on his research. This
grew and grew over the years. He was
encouraged to put in for Australian
Research Council grants but, until the last
year or two, he applied only for small grants.
These were used to fund visits of workers
in his field. He also obtained visiting
professorships in the US. In 1975–6 he
visited Schmerl at the University of
Connecticut (Storrs, Connecticut);  in
1980–81 and again in 1985, Terry Millar at
the University of Wisconsin at Madison and
in 1987, Julia Knight at Notre Dame
University (Notre Dame, Indiana). Millar
and Millar ’s student, John Chisholm,
visited Chris. Yuri Gurevich from the
University of Michigan (Ann Arbor,
Michigan) and Ted Slaman from the
University of Chicago also visited Monash
and talked or worked with Chris.

The work of Ash and Nerode was closely
related to that of the Russian logic school
at Novosibirsk, Siberia. Sergei Goncharov
visited from there in the early eighties and
he and Ash subsequently wrote a paper.

Most important among these connexions
was that with Julia Knight, with whom he
worked continually for nine years. At the
time of writing, there are four joint papers
to appear, and Knight is in the process of
completing a book which Ash had started
[1996].

In teaching, Ash took the utmost pains
and gave lectures of exemplary clarity. He
was not, however, an administrator. As his
career progressed, it was expected that he
would, in the usual way, do more senior
committee work. In that context, the
precision and possibility of getting things
exactly right were not available as they
were in mathematics, and this caused him
anguish. How could he decide, with
incomplete data, on the relative merits of
incomparable candidates? He found this
impossible and intolerable, sought guidance
and seemed terrified of making a mistake
instead of fearing the consequences of not
making a decision.

One other factor made his final years
increasingly difficult. His department had
adopted a system of calculating points for
work, which was intended to spread the
workload evenly. Chris did not conform to
the usual profile.  He was unable to
accumulate points through administrative
jobs, and his enormous effort in research
brought relatively few points. Unfort-
unately, Chris worried about this, and
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despite the reassurances of succeeding
heads of department, it made him question
his worth and justification. This was very
sad because all but he could see what an
asset he was. Even his election to the
Australian Academy of Science in 1994
buoyed him up for only a limited period. At
the very same time his research fecundity
was growing ever more rapidly – and taking
more effort.

He had medical treatment for his
psychological state, but it is unclear how
much this helped. Certainly he was
disaffected by the side-effects of the drugs
he was given. In February, 1995, when he
died, he left a note in which he characterized
himself as ‘too old and unattractive to carry
on’ [Mem].‡

2. Work in algebra
Chris Ash’s interest in algebra was already
evident, at least from the standpoint of a
mathematical logician, in his Oxford DPhil
thesis [1972a]. Six of his later papers show
his continuing interest in the questions he
looked at in Part II of his thesis, Boolean
extensions and Post algebras, for example
his 1975 paper [1975a] and his 1986 paper
[1986b]. In this work there was a merging
of his interests in model theory, in what was
possible in algebra if one restricted oneself
to what could be effectively constructed, in
universal algebra, and in the algebras
underlying mathematical logic and their
generalizations.

As mentioned above, when Chris arrived
at Monash, he found a great deal of activity
in semigroups, involving the regular faculty
members and many visitors. This quickly
attracted him and eventually he became a
leading developer of semigroup theory, in
particular solving three outstanding
problems on which, prior to his solutions,
numerous partial results had been obtained
over many years. He brought to the solution
of these problems a knowledge of techniques
in model theory and in ordinal and cardinal
arithmetic, his use of which continues to
have a major effect on the development of
semigroup theory. His first paper on
semigroups was a joint one with T.E. Hall
[1975c], and although they wrote only one
other joint paper, this was the start of a

collaboration, witnessed by the explicit
attribution of results by each to the other,
that continued for most of Chris’s life.

The first result on semigroups of Ash to
appear in print was in the 1974 paper of
W.D. Munn [Mun]. This is an example, of a
semilattice (i.e. a poset [= a partially
ordered set] in which any two elements have
a greatest lower bound) that is, in Munn’s
terminology, subuniform and dense in itself,
but not densely subuniform. The con-
struction involves a delicate use of order
types and the proof that it  has the
properties desired is the central result of
the paper [1977].

The paper [1975c] with T.E. Hall, already
referred to, was an elegant contribution to
the problem of determining what kind of
poset can be (isomorphic to) the poset of
J-classes of some semigroup. Hall had
already in [Hal] shown, by an inductive
construction, that any finite poset with a
least element could be so realised, solving
a problem posed by J.L. Rhodes in [Rh]. In
their joint paper, starting from a poset P
with a least element, they first construct an
equivalent directed graph G = G(P), from
which they construct an inverse semigroup
S = S(G), whose elements are bijections
between sets of directed paths in G, and
whose poset of J-classes is isomorphic to P.
That P has a least element is essential for
this construction. As a bonus the con-
struction also led to the discovery of a
construction for congruence-free inverse
semigroups.

The poset of J-classes of a semigroup does
not necessarily have a least element when
the semigroup is not finite, but it is always
downward directed, i.e. given any two
elements of the poset there always exists
an element that is less than each of them.
Paper [1979c] shows that any downward
directed poset can be realised as the poset
of J-classes of a completely semisimple
inverse semigroup.

The crux of the solution to this problem
is in [1979b], in which it is shown that if P
is a downward directed poset, then there
exists a full, uniform, P-semilattice. The
concept of a P-semilattice is due to Ash, and
the argument to establish the above
existence theorem is complicated and
subtle,  requiring deep results from
universal algebra and set theory. Paper
[1980a] provides a corollary: it characterizes
the lattices of ideals of a semigroup,
including the empty ideal, as those lattices
that are complete, distributive, and such

‡He was found dead on 16 February 1995.
The coroner simply recorded that death was
due to ‘acute…toxicity’ and that ‘no other
person contributed to his death’.
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that every two non-zero elements have non-
zero meet and such that every element is a
join of compact, join-irreducible, elements.

Paper [1979a] is an ingenious exercise in
the arithmetic of order types constructing
a uniform semilattice X such that the Munn
semigroup TX (the semigroup of all iso-
morphisms between principal ideals of X)
has no chart. The chosen X is of order type
λ + (1+λ)ω1, where λ is the order type of the
reals and ω1 is the first uncountable ordinal.

There is now an interlude of seven years
before Ash writes again about semigroups,
except in the wider context of universal
algebra, but where the interest in the
problems solved first arose for semigroups.

Paper [1980a] looks at when, and how, a
semigroup S  can be embedded in a
semigroup T so that T has automorphisms
extending (some) isomorphisms between
subsemigroups of S. In particular, it is
shown that an inverse semigroup S may be
embedded in an inverse semigroup T such
that every isomorphism between inverse
subsemigroups of S extends to an inner
automorphism of the form s a g–1sg, for
some g ∈ T, with g–1g = gg–1 = 1. A second
generalization, for inverse semigroups, of
the Higman-Neumann-Neumann [1949]
theorem on groups with amalgamated
subgroups is also offered.

Paper [1985a] introduces an important
new concept, that of a generalized variety.
A variety is a class of (universal) algebras
that consists of all algebras of a given type
that satisfy a set of identities. Equivalently,
according to the famous Birkhoff [Bi]
theorem, a class K of algebras is a variety
if and only if it is closed under the formation
of morphic images, subalgebras and direct
products. If L is any class of algebras, write
P(L) for the class of all direct products of
members of L, M(L) for the class of all
morphic images of members of L, and S(L)
for the class of all subalgebras of members
of L. Then Birkhoff ’s theorem states that K
is a variety if and only if K = M(S(P(K))) or,
omitting some brackets, MSP(K).

More recently, with the growing
emphasis on finite algebras, especially in
automata theory, classes of algebras have
been studied in which each algebra is
required to be finite. In particular, the finite
members of a variety form what is called a
pseudo-variety. K is a pseudo-variety if and
only if K = MSPf(K), where Pf(K) denotes the
class of all direct products of a finite number
of members of K. Not all pseudo-varieties
are obtained by taking the finite members
of a variety.

Ash’s concept of a generalized variety is
what is required. Define the operator Pow
on a class of algebras L by: Pow(L) is the
class of all powers of algebras in L. Then a
generalized variety K is defined to be a class
of algebras such that K = MSPf Pow(K). Ash
shows that a pseudo-variety is the same
thing as the class of finite members of some
generalized variety. In addition, he
establishes that a variety is a special case
of a generalized variety but the converse is
not true.

In the mid-1970s the following problem
was circulating in Paris: what is the pseudo-
variety generated by the finite inverse
semigroups? In 1985 (see his [1987b]) Ash
showed that it is the class of all finite
semigroups for which any two idempotents
commute. This is equivalent to showing that
any finite semigroup with commuting
idempotents is the morphic image of a
subsemigroup of a finite inverse semigroup.
The proof brought a wealth of new ideas and
ingenious techniques and his paper met
with wide acclaim. [1987a] presents a
special case of his result, the case when J
is trivial, but which displays the principal
features of the proof. Paper [1990a], written
in conjunction with T.E. Hall and J.-E. Pin,
gives applications of both the results and
the methods used, to investigate recog-
nizable languages associated with pseudo-
varieties of semigroups with commuting
idempotents.

Ash’s final achievement in semigroups
([1990e]) was to prove the so-called ‘type II
conjecture’. This had been around since the
early ’70s and had attracted great interest
and extensive publications had appeared,
going part of the way towards its
verification. [1990e] is the manuscript of a
conference talk (July 1990) in which Ash
announced that the conjecture was true and
provided the bones of his method of proof.
Full details are in [1990e], which also
includes important implications of the
result.

In his memorial message [Mem] Margolis
wrote: ‘The group kernel K(S) of a finite
semigroup S is the set of elements that are
related to the identity in every relational
morphism onto a finite group. The type II
subsemigroup SII of S  is the smallest
subsemigroup of S that contains the idem-
potents of S and is closed under weak con-
jugations: if sts = s ∈ S, then sSIIt ∪ tSIIs SII.

‘In 1972, Rhodes and Tilson [R-T] proved
the SII K(S )  and that every regular
element of S that is in K(S) is, in fact, a
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member of SII. This proved in particular that
if S is a regular semigroup, then SII = K(S).
The type II conjecture was that this equality
holds for every finite semigroup. Besides,
its elegant formulation, the most important
consequence of the conjecture is that
membership in SII is effective given the
multiplication table of S, while that of K(S)
a priori involves searching through the
infinite collection of all  relational
morphisms from S to finite groups. The type
II conjecture guarantees that membership
in K(S) is decidable and many important
problems in semigroup theory turned out to
be reducible to the effective computation of
this subsemigroup.

‘I was aware of the conjecture in 1974
when I was a graduate student at Berkeley.
I believe it appeared in print in Semigroup
Forum in the mid-70’s in an article by
Rhodes that listed some open problems in
finite semigroup theory. Not much was done
on this problem during the ’70’s. The Rhodes-
Tilson article was long and difficult to read
and the interests in finite semigroup theory
had turned to the development of the new
theory of pseudovarieties that had been
developed by Eilenberg and Schützenberger
to give a firm tie between semigroup theory
and the theory of recognizable languages.

‘In the summer of 1980, Jean-Eric Pin
asked me if the pseudovariety of finite
semigroups generated by finite inverse
semigroups was equal to the pseudovariety
of finite semigroups all of whose idem-
potents commuted. After thinking about
this for a few days, it occurred to me that
this was in fact a special case of the
somewhat forgotten type II conjecture!
Furthermore, it didn’t seem at first to be
much easier than the general case. I was
preparing to give a survey talk on finite
semigroups at a conference to be held in the
fall of 1980 at the University of Nebraska.
I thought that this would be a good
opportunity to let people in inverse and
regular semigroup theory help with a
significant problem of finite semigroup
theory. I reported the nature of the type II
conjecture at the conference and explicitly
asked about the question raised by Pin.

‘Luckily, Tom Hall was in the audience
and perceived that this was indeed a non-
trivial and interesting problem. We were all
rewarded in 1985 when Chris confirmed
that the Pin question was answered in the
affirmative in a brilliant piece of work. The
difficulty, of course, lay with the non-regular
elements of a finite semigroup, as the
regular ones had been handled by Rhodes

and Tilson. Chris was able to handle the
non-regular elements by using Ramsey’s
Theorem. This result in itself led to a
number of breakthroughs in this and
related theories.

‘Some progress was made on the general
problem in the late 80’s. After hearing Tom
Hall give a wonderful lecture on Chris’s
results at Chico, Rhodes, Birget and I were
able to extend the result to proving the type
II conjecture in the case that the idem-
potents of S were a subsemigroup. Tilson,
inspired by the result of Chris, gave a new
easily understandable proof of the Rhodes-
Tilson result on regular elements, which
cleared up the connection between weak
conjugation and inverse semigroups. This
proof indicated heavily that inverse
semigroups and Ramsey theory should be
the ingredients necessary to prove the
general type II conjecture. In the late 80’s
Rhodes and Henckell [He] developed a
number of new techniques and reduced the
type II conjecture to the case of block
groups, semigroups whose regular principal
factors are Brandt semigroups.

‘In 1990, I came to Monash to attend the
Preston retirement conference. I explained
these latest developments to Tom and Chris
as best I could. During that week before the
conference, Chris was able to complete his
proof of the type II conjecture. It is a
masterpiece. He was actually able to prove
much more than the type II conjecture, with
a brilliantly conceived generalization of the
basic notions. In fact, these improvements
were crucial for some of the deepest
applications of his work. In fact, the Rhodes
type II conjecture follows by applying the
generalization to a graph with only one
vertex and one arrow!’

The papers on the Type II conjecture were
greeted with great excitement when they
appeared and they were quickly followed by
an explosion of research exploring the deep
consequences of both Ash’s theorem and the
new techniques he developed. The
interested reader can find a good account
of some of these consequences in [1990a],
[1990e] and [1991b].

3. Work in Logic
In logic, at first Ash worked on misc-
ellaneous problems. From [1981a], joint
with Nerode, he developed his own pro-
gramme of research, but he continued
working on miscellaneous problems from
time to time. This work was often done in
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response to the challenges of various
logicians, just as the work on semigroups
was done in response to the challenges of
Tom Hall and other semigroup theorists.

We have already discussed Ash’s thesis.
Our discussion of the work Ash did in logic
after that is divided into two parts. We begin
with the results on miscellaneous problems
and then we describe the main programme.
The classification is not sharp, of course.

3.1 Miscellaneous Problems
In [1975b], Ash showed that, assuming the
Axiom of Choice, the additive groups of real
numbers and complex numbers are iso-
morphic, and that without the Axiom of
Choice, they need not be. Continuing this
line of thought in [1983a], he showed that
many of the standard consequences of the
axiom of choice can be expressed in a model-
theoretic way by looking at the infinitary
sentences associated with the model.
Indeed, he provided a uniform method for
establishing the independence of such forms
of the axiom of choice.

In his [1975d] Ash characterized the
languages in which every sentence which
has a model has a finite model, and those
in which every universal sentence which has
a model has a finite model. (A universal
sentence consists of a string of ‘for all’
quantifiers, with no quantifier later.)

Chris liked working on famous hard
problems. In [1994a], he recorded his
efforts on one such problem, the spectrum
problem. The spectrum of a sentence is the
set of sizes of finite models of the sentence,
and the problem, still open, asks whether
the complement of a spectrum is nec-
essarily a spectrum. In attempting to give
an affirmative answer, Chris reduced the
problem to another statement, conjectured
true.

Another famous open problem is the
conjecture P ≠ NP, where P is the collection
of functions computable in polynomial time
by a deterministic machine, and NP refers
to the collection of functions computable in
polynomial time by a non-deterministic
machine (a lucky guess yields a fast
computation, while other guesses might
not). Chris spent a great deal of time trying
to prove that P ≠ NP ,  until he finally
convinced himself that the problem was
pure combinatorics.

The most famous problem in model
theory is Vaught’s Conjecture, saying that
for a countable complete theory T, the
number of countable models (up to iso-

morphism) is either ≤ ℵ0  or 2ℵ0 . Ash had
worked on Vaught’s Conjecture early in his
career. The little result he obtained is in
[1994c]. Unknown to Ash, the referee and
the editor, Vaught had proved the result
himself, and it had been used in a paper of
Shelah [She, p.560].

Ash worked with J.W. Rosenthal on some
computability questions in concrete
algebraic settings. In [1980b], they showed
that the theory of the complex number field
with a binary relation for algebraic
dependence of pairs is undecidable. In
[1986b], they used some differential algebra
to obtain a result on algebraically closed
fields, saying that for recursive fields F and
G of finite transcendence degree, given
transcendence bases for F and G, one can
effectively determine the transcendence
degree of F ∩ G. In [1981b], Ash and Nerode
showed the non-functorial nature of the
notions of ‘algebraic closure’  and
‘Skolemization’.

As we said earlier, recursion theory
involves classifying sets in terms of
computability properties.  There are
different ways to do this. We can classify
arbitrary sets of numbers by Turing degree.
For sets X and Y, Y is said to be Turing
reducible to X (for Alan Turing) if there is
an effective procedure for determining
membership in Y given answers to questions
about membership in X. If the sets X and Y
are each reducible to the other, then they
are said to be Turing equivalent, or to have
the same Turing degree. Sets and relations
which admit some kind of effective
approximation are classified by level
(a constructive ordinal) in the hyper-
arithmetical hierarchy. This hierarchy
begins with the recursive sets and relations.
Then come the projections of recursive
relations, called Σ0

1  (these are the same as
the recursively enumerable or r.e. sets), and
the complements of Σ0

1   relations, called Π0
1  .

After that come the projections of Π0
1

relations, called Σ0
1   and their complements,

called Π0
1  , and so on. At level ω, one chooses

a family of sets running through the lower
levels, takes the limit, and begins again
with the relations which are recursive
relative to this limit. The projections of
these are Σ0

ω, the complements of Σ0
ω relations

are Π0
ω, etc. For other constructive limit

ordinals α, the process is as for ω. A relation
which is both Σ0

α and Π0
α is said to be ∆0

α. The
arithmetical sets and relations are those at
finite levels; i.e. ∆0

n for some finite n.
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Terry Millar of the University of
Wisconsin-Madison was a research student
of Anil Nerode. He and Chris visited each
other several times over a fourteen-year
period. Although they collaborated on a
number of topics that grew into subsequent
papers or dissertations of their respective
students, they only published one co-
authored paper [1983b] together.

Vaught proved that no complete theory
could have exactly two countable models up
to isomorphism. Ehrenfeucht produced an
example of a complete theory with exactly
three countable models up to isomorphism.
Complete theories with more than one but
only finitely many countable models up to
isomorphism are now called ‘Ehrenfeucht
theories’. Lachlan and Morley answered a
question of Nerode’s by showing that there
exist decidable Ehrenfeucht theories with
undecidable countable models. Millar later
showed that the Turing degrees of such
models in fact were unbounded in the
hyperarithmetic hierarchy. However, all of
the known examples at that time depended
on producing models with finitely many
elements whose behaviour was computably
complex. Ash and Millar, in their [1983b],
proved that for a broad class of arithmetic
Ehrenfeucht theories, any model with
computationally ‘simple’ (arithmetic) finite
tuples of elements must be arithmetic.

In his [1984] with Rod Downey, who had
been a research student at Monash, he
considered the lattice of r.e. subspaces of a
recursive vector space. A subspace is said
to be decidable  i f  we can determine
dependence over it. Ash and Downey showed
that every r.e. subspace is a direct sum of
two decidable subspaces, so the theory of
the partially-ordered set of decidable
subspaces is undecidable. They also gave
other results on the Turing degrees of r.e.
subspaces.

[1990b] was written with C.G. Jockusch
and J.F. Knight. The notion of ‘jump degree’
was due to Jockusch. The results here
continue work in an earlier paper of Knight.
Ash was intrigued by some ideas [1990b],
although he felt that the proofs which
Knight gave for certain results called for re-
working. This paper led to [1990c] and
[1991a] (see below).

In [1992b], Ash considered general-
izations of ‘enumeration reducibility’, at
arbitrary levels of the hyperarithmetical
hierarchy. The paper involved an
interesting kind of forcing, with conditions
which, although finite, carry infinite
information. This paper led to [1994f].

3.2 The Main Programme
Chris Ash said that the way to find the
‘right’  proof of a given result was to
generalize the result. Ash generalized
repeatedly certain results of Goncharov
and his own results with Nerode [1981a],
until the generalizations grew into an
elaborate programme of  research in
recursive model theory, including powerful
new technology for nested priority
constructions, the isolation of certain
classes of infinitary formulae, and, for
applications, the calculation of ‘back and
forth’  relations for various kinds of
structures.

The problems in the programme call for
syntactical conditions to account for
limitations on recursive complexity which
persist in all recursive copies of a given
structure. A structure is recursive if the
satisfaction of atomic formulae is decidable.
Ash’s programme grew from the three
problems stated below:
Problem 1. Let A be a recursive structure,
and let R be a further relation on A. When
is there an isomorphism f from A onto a
recursive B such that f(R) is not recursive?
If there is no such f, i.e. if f(R) is always
recursive in recursive copies, then R is said
to be intrinsically recursive on A.
Problem 2. Let A be a recursive structure.
When is there a recursive copy B with no
recursive isomorphism from A onto B. If
there is no such B, i.e. if for every recursive
copy of A, there is a recursive isomorphism,
then A is said to be recursively categorical.
Problem 3. Let A be a recursive structure.
When is there an isomorphism f from A onto
a recursive B such that f is not recursive? If
every isomorphism from A onto a recursive
structure is recursive, then A is said to be
recursively stable. (This term had been used
by Goncharov, although in model theory,
stable structure usually refers to something
quite different.)

There are variants of these problems.
Problem 1 can be varied so that the aim is
to produce a recursive copy B in which the
image of R is not r.e., or Σ0

α , or to produce a
copy B, not necessarily recursive, such that
the image of R is not Σ0

α relative to B, and
there are similar variants of Problems 2
and 3.

Ash’s paper with Nerode [1981a]
concerns Problem 1, and the variant in
which the aim is to make f(R) not r.e.. If R
is definable by an infinitary formula ϕ(c,x)
which is an r.e. disjunction of existential
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formulae, then the image of R is r.e. in all
recursive copies. The converse holds
provided a certain side condition holds on
the one copy.

Problems 2 and 3 were first considered
in the mid-1970s by Goncharov [G1], [G2].
Goncharov, Nurtazin and other members of
a group at Novosibirsk, in the former USSR,
had done considerable work in this area.
Goncharov visited Ash and subsequently
they wrote [1985b]. This concerns a variant
of Problem 2 in which A is decidable (i.e.,
satisfaction of all formulae of the usual kind
is decidable). The aim is to produce a
decidable copy with no ∆0

2 isomorphism.
There is no satisfying syntactical condition.
The paper makes additions to the stock of
pathological examples.

Ash’s [1986a] is about the variant of
Problem 3 in which the aim is to make
f not ∆0

n. The two papers [1986a] and [1986c]
represent a tremendous advance. In both
papers, the aim was to lift the results of
Goncharov on Problem 3 to higher levels –
finite in [1986a] and transfinite in [1986c].
These papers introduce, all at once, the most
important notions and technology for
carrying Ash’s programme to higher levels.
First, there is a description of the class of
recursive infinitary formulae. In recursive
infinitary formulae, the infinite disjunctions
and conjunctions are over r.e. sets (making
this precise involves ordinal notation in an
essential way). Considered all together, the
recursive infinitary formulae have the same
expressive power as the hyperarithmetical
infinitary formulae, but this is a non-trivial
theorem. The important feature of recursive
infinitary formulae involves their class-
ification as recursive Σα or Πα for various
constructive ordinals α .  In recursive
structures, satisfaction of recursive Σα
formulae is Σ0

α and satisfaction of recursive
Πα formulae is Π0

α.
In addition to the recursive infinitary

formulae, [1986a] and [1986c] contain an
abstract formulation of the object of a
‘priority’  construction, and there are
‘metatheorems’ guaranteeing the success of
the construction. The priority method was
developed by Friedberg [Fr] and Muchnik
[Mu] (independently) to solve a problem on
r.e. sets. It is arguably the most important
method for obtaining results in recursion
theory. Ash applied the method extensively,
and his deepest results are contributions to
the method itself.

Thus, it seems important to try to
describe the method. In a priority con-

struction, the aim is to enumerate a set so
as to satisfy a list of ‘requirements’. The
information needed for the requirements
may not be accessible in an effective way.
The enumeration therefore proceeds based
on systematic guessing. The strategies for
meeting the separate requirements may
come into conflict. When this happens, the
conflict is resolved according to a system of
priorities. Action on behalf of a given
requirement typically results in injury to
lower priority requirements.

The construction of Friedberg and
Muchnik was a finite injury construction.
In such a construction, each requirement is
injured at most finitely many times, and
with ∆0

2 information, it is possible to
determine how the requirements are met.
There are infinite injury constructions,
where with D0

2 information it is possible to
determine how the requirements are met.
There are infinite injury constructions,
where with ∆0

3 information it is possible to
determine how the requirements are met.
There are constructions involving inform-
ation at still higher levels.

Harrington had described a ∆0
ω con-

struction in terms of ‘workers’, in 1979, but
only in handwritten notes, which Ash had
not seen. Marker [Ma] and Knight [Kn],
having seen Harrington’s notes, had tried
using workers themselves. However, there
was no ‘metatheorem’ before Ash.

Priority constructions can be extremely
difficult to write out, to read, to check, and to
vary. Harrington’s construction was a house
of cards. With Ash’s metatheorem, where it
applies, the proof is nice and modular. Ash said
that before proving the metatheorem, he could
not see how to proceed with the higher level
version of Problem 3. Moreover, he had
suggested to E. Barker, as a problem for his
Master’s thesis, the higher level version of
Problem 1 [B].

Having described the appropriate
formulae, and developed the technology for
the priority constructions, Ash obtained
results of the kind he wanted. The results
have some rather strong effectiveness
hypotheses. In particular, in the given copy
of the structure, certain ‘back-and-forth’
relations must be r.e. (uniformly). Ash
calculated the back-and-forth relations for
recursive well-orderings and showed how
his results applied to these familiar
structures.

The metatheorem from [1986c] was
applied by Ash in [1987a], [1990c], [1990d]
(slightly modified), [1991a] and [P1]. As
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planned, Barker used the metatheorem in
his Master ’s thesis (12), showing that,
modulo some effectiveness conditions, R is
intrinsically Σ0

α on A if and only if it is
definable in A by a recursive Σα. Later,
Davey [D] used the metatheorem in his
Master ’s thesis,  and two of Knight’s
students, K. Hurlburt [Hu] and A. Vlach [V],
used it in their PhD theses. Hurlburt was
behind some minor corrections which Ash
published.

In [1987a] Ash extended Goncharov’s
result on Problem 2 to transfinite levels. He
showed that his results applied to
superatomic Boolean algebras. To do this,
he calculated the back-and-forth relations
for these structures.

The paper with J.F. Knight, M. Manasse
and T. Slaman [1989] varies Problems 1, 2
and 3 by considering arbitrary copies of the
given structure, instead of only recursive
copies. The proofs use forcing. The results,
with no side conditions, give evidence that
the recursive infinitary formulae have all
the expressive power needed for problems
of this general kind. Manasse and Slaman
had obtained some of the results before Ash
and Knight, but had not published them. J.
Chisholm obtained similar results
independently [Ch].

In [1990c], with J.F. Knight, conditions
are given on a pair of recursive structures
A and B under which, for all sets Π0

α sets S,
there is a uniformly recursive sequence of
structures (Cn)n∈ω such that Cn is isomorphic
to A if n∈S and to B otherwise, and there
are some other related results. J. Thurber
[Th], in his PhD thesis, used results from
the paper to re-work and extend results of
L. Feiner [Fe] on Boolean algebras.

An r.e. quotient structure is the quotient
of a recursive structure by an r.e. congruence
relation. It is like a recursive structure,
except that equality is not recursive, only r.e..
Love, in his Master’s thesis [Lo1], considered
the variant of Problem 3 for such structures.
In working with Love, Ash began thinking
of structures in which various other relations
were required to be r.e.. He realized that the
metatheorem, as originally stated, did not
apply. In [1990d], he discussed ‘r.e.
structures’ and he modified the metatheorem
so that it could be used in this context. There
were other simplifications as well.

In [1990b], there was a generalization of
a result of Watnik [W], saying that for all
constructive ordinals α ,  Zα ⋅ A  has a
recursive copy if and only if A has a ∆0

2α copy.
In [1991a] Ash returned to this, general-

izing the result further and giving a better
proof.

The paper [1992a], with J.F. Knight,
considers the following variant of Problem 1.
Let A be a recursive structure, and let ϕ(R)
be a recursive Π2 sentence, true in an
expansion of A, by a recursive relation R.
Under what conditions is there a copy B
with no relation R satisfying ϕ(R) and
recursive relative to B?

Ted Slaman briefly visited Monash and
subsequently Ash wrote his [1993], with
J.F. Knight and T. Slaman. Slaman
observed some uniformity in the proof of
[1992a]. He and Ash isolated several related
notions, and determined some of the
implications between pairs of these notions.
Knight made some minor contributions
later, when the paper was being written up.

For a time, Ash enjoyed the belief that
his metatheorem was completely general;
that is, anything which could be done by a
nested priority construction could be done
using his metatheorem. He was able to
prove Harrington’s [1979] result. However,
there are problems – variants of the basic
three – calling for priority constructions
with special features which the original
metatheorem could not handle. In [1994d]
and [1994e], Ash and Knight developed
variants of the metatheorem to solve some
of these problems. In [1994e] there is a
metatheorem for constructions with
requirements at different levels. This can
be applied to the variant of Problem 1
involving a family of relations Rn on A,
where the aim is to produce a recursive copy
in which, for all n, the image of Rn is not
Σ0

βn
. In [1994d] there is a metatheorem for

constructions in which sets are being
enumerated at different levels.  The
syntactical conditions are related to those
in [L], [1990d] and [Har]. They involve a
new classification of recursive infinitary
formulae. His [1994d], with J.F. Knight,
contains an extension of the metatheorem
for constructions with sets enumerated at
different levels.

In [1994f], there is a result saying that
the formulae isolated in [1994d] are the
right ones – [1994f] bears the same relation
to [1994d] as [1989] does to [B]. The proof
is a forcing construction, using ideas from
[1992b] as well as [1989].

At the time of his death, five of Ash’s
papers had not appeared, although all had
been accepted for publication. Three of these
have now appeared. One of the papers [P5]
is expository. Among the others, two
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[1997a], [19972b] were ready to submit
when Ash died. The other two [1996], [P1]
needed more work, although the results,
joint with Knight, had been thought
through.

V. Harizanov, a former student of Millar,
showed that, in the setting of Problem 1,
the conditions of [1981a] for producing a
recursive copy of A in which the image of R
is not recursive are not sufficient to give it
arbitrary r.e.  degree. She also found
conditions for making the image of R r.e. of
arbitrary r.e. degree [Har].

Let A be a recursive structure, and let R
be a further relation on A, as in Problem 1,
above. A set is simple if it is r.e. and the
complement, while infinite, has no infinite
r.e. subset. Hird, in his PhD thesis under
Ash, gave conditions for making the image
of R as simple as possible [Hir].

In [1997a],  joint with Knight and
Remmel, the aim was to give conditions for
making the image of R simultaneously as
simple as possible and of arbitrary non-zero
r.e. degree. Simply combining the conditions
of Harizanov and Hird does not work. Ash
and Remmel had worked on the problem
some years earlier, but had never published
and had misplaced their notes. Ash and
Knight started over.

Ershov defined a hierarchy of ∆0
2 sets,

based on differences [E1], [E2], [E3]. For a
∆0

2 set X, there is a recursive ‘guessing’
function g(x,s) such that if x ∈ X, then for
all sufficiently large s, g(x,s) = 1, and if
x ∉ X, then for all sufficiently large s,
g(x,s) = 0. If X is r.e., we can take g such that
for each x, the value starts at 0 and changes
at most once. For a 2-r.c., or n-r.e. set, the
value changes at most twice, or n times. The
definition extends through the constructive
ordinals. For an α-r.e. set, an ordinal ≤ α
accompanies each guess, and the ordinal
decreases whenever the guess changes.

In [1996], joint with Knight, again the
setting was as in Problem 1. The aim was
to give conditions for making the image of
R not 2-r.e., or not α-r.e.. In [1997b], joint
with Cholak and Knight, the aim was to give
conditions, for fixed α, guaranteeing that
the image of R can be given arbitrary α-r.e.
degree, or made α-r.e. and of arbitrary α-
r.e. degree. In [1997b] it is also shown, using
forcing, that if R can be given arbitrary ∆0

3
degree, then it can be given arbitrary
degree.

In [1995], Ash and Knight showed that
the most obvious conditions for lifting
Harizanov’s results to arbitrary levels in the

hyperarithmetical hierarchy fail. In [P1],
joint with Knight, there are results related
to this. It is shown that the conditions for
making the image of R not ∆0

α are sufficient
to give it arbitrary Σ0

α degree modulo ∆0
α, and

the conditions for making the image of R Σ0
α

and not ∆0
α are sufficient to make it Σ0

α of
arbitrary Σ0

α degree modulo ∆0
α. There is a

more general statement involving REA
sequences, as in [1995]. In addition, the
paper considers some model theoretic
versions of the Friedberg-Muchnik
Theorem. There are conditions on a
recursive structure A and a pair of relations
R and S, guaranteeing that there is a
recursive copy in which the images of R and
S are r.e. and independent, or Σ0

α and
independent over ∆0

α.
The book [P6] which Ash had started was

not meant to be jointly authored. It is
entitled Computable Structures and the
Hyperarithmetical Hierarchy.  Ash had
written parts of the first five chapters, and
chapter titles for the rest. Knight is in the
process of completing the book. It describes
Ash’s programme and includes the
background material from recursion theory
and model theory (material on ordinal
notations, infinitary formulae, etc.) ,
necessary for a thorough understanding.

In contrast to his work on semigroups,
where a long familiarity with a problem
(The Rhodes type-II conjecture) ultimately
led to a final successful assault, Ash’s work
in logic is more of a continuous process. His
deep study accompanied by a passion for
elegance enabled him to tackle structures
of richer complexity. His work used in [Mun]
and his [1979b] took notions of model theory
(homogeneous-universal models) and, by
adding more structure, enabled him to solve
outstanding problems in semigroup theory.

The study of ‘intrinsic’ complexity in
mathematical structures, with Nerode’s
encouragement at the outset,  grew
infinitely more complicated as Ash
concentrated on it. Again, Ash’s elegance of
presentation made complicated results
manageable. His aerial view (his meta-
theorem of [1986c], in particular), opened
up a land which previously had looked like
an amorphous and virtually pathless
swamp, and allowed its mapping and
exploration.
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4. Conclusion
The last few years of Chris Ash’s life
displayed an ever-increasing productivity.
Among semigroupists, his work is widely
known and has found extensive application
already. Ash’s primary research area was
logic and by his own reckoning, his best and
deepest results are in [1986c]. Ash’s work
in computable structure theory is already
admired by the handful of people who
specialize in this sort of thing. However,
there are signs of growing interest in
computable structure theory among the
broader community in recursion theory/
computability. The metatheorems are, as
yet, understood by only a few people, but
the fact that they have been used
successfully by students from Monash and
Notre Dame points to the possibility of
further applications. Lerman and Lempp
[L-L1], [L-L2], who in working on certain
problems in pure recursion theory, began to
develop their own framework for priority
constructions, indicate that they used some
of Ash’s ideas. The effects of Ash’s work will
be felt for a long time to come.
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