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Formative Years 1924–39

Eric Barnes was born on 16 January 1924
in Cardiff, Wales. He was the only child of
William H. and Dorothy Barnes. His father
did not proceed beyond primary school
and spent his life as a manual worker. His
mother attended secondary school and
took various clerical jobs. The family suf-
fered during the depression of the 1920s in
South Wales and this prompted the father
to migrate to Sydney in 1926, and Eric and
his mother followed in 1927. His mother
could not tolerate the new life and went
back with Eric to Cardiff, but they eventu-
ally returned to Sydney in 1929.

Eric proved to be a precocious child,
learning to read when very young and able
to tell the time at age 3. He attended
Punchbowl Primary School and accelerated
through the grades to the final grade at age
9. His results in the Primary Final examina-
tion qualified him for admission to a full
high school but he was considered too
young to proceed. He sat the Primary Final
again the following year and finished high
enough to qualify for a State Government
Bursary; but alas there was a condition that
one had to be 11 years old by the following
1 January, and the award was refused since
Eric was 15 days too young. Nevertheless,
with the support of his parents, he entered
Canterbury Boys’ High School in 1935. At
the end of his first year he took the Primary
Final for the third time and was duly
awarded a Government Bursary.

Eric excelled academically at Canter-
bury. For the Intermediate Certificate in
1937 he gained the maximum of eight As

(and was awarded a pair of gold cuff-
links). At the Leaving Examination in 1939
he gained first-class honours in the two
Mathematics subjects and French, second-
class honours in German, and As in
English and Latin. He was awarded the
Barker Scholarship for Mathematics,
shared the Garton Prize for French, and
won a University Exhibition and a State
Government Bursary.

University of Sydney 1940–43

Eric was first attracted to a career as an
actuary. The arduous seven-year course
was conducted from Britain. At the end of
1939 a torpedo sank the ship carrying the
examination papers and the course was
abandoned for ‘the duration’. Eric opted
for an Honours BA course in both Mathe-
matics and French at the University of
Sydney. He won prizes in both subjects
every year, graduating at the beginning of
1943 with First-Class Honours in Mathe-
matics and French. Although he was
recommended for University Medals in
both subjects, the recommendation was
rejected because he had taken three and not
four years for the honours courses.

War Service 1943–45

During 1942, Eric had been approached by
A.D. Trendall, Professor of Greek at the
University of Sydney, as a candidate for a
special unit of the Australian Intelligence
Corps located at Victoria Barracks in Mel-
bourne. Eric duly joined the Citizen Mili-
tary Forces in 1943 and served for three
years in the Intelligence Section, with the
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particular task of decoding Japanese diplo-
matic messages.

It was only in the 1990s that informa-
tion concerning the secret work of the
Australian Intelligence Unit was made
public. In an article ‘Our War of Words’ in
the Sydney Morning Herald (19 September
1992), the author David Jenkins profiled
the Australian code-breakers ‘who helped
change the course of history’. The code-
breakers were mainly classicists and
mathematicians. To quote from the article:
‘There were, however, notable exceptions
to the rule that said that classicists were
better than mathematicians. One or two of
the younger mathematicians, Barnes in
particular, proved to be highly skilled
code-breakers’. In conversation in later
years Eric recalled that he gained his com-
mission as a Lieutenant because of his
success in cracking a Japanese code that
had baffled the British experts at Bletchley
Park.

An interesting account has been given
by some of Eric’s colleagues in the Special
Intelligence Section of the solving of the
so-called Kormoran cryptogram. Although
there is some controversy about the matter,
HMAS Sydney was apparently sunk, with
all crew lost, by the German raider Kormo-
ran off the coast of Western Australia on
19 November 1941. Captain Detmers and
the crew of the damaged Kormoran aban-
doned their ship and were captured and
interned. On 11 January 1945 Detmers,
with others, escaped from a POW camp
and when recaptured had in his possession
a book with coded messages. These were
sent to the Section and other Intelligence
groups for decryption. One of Eric’s col-
leagues writes: ‘It was not difficult to break
this cipher, once it had been recognised.
I cannot remember the details of this
breaking, but I am sure the crucial steps
were taken by Barnes, who used to see in
two minutes what would take me two
hours.’ The same colleague described Eric
as having a ‘laser-sharp mind’.

Although Eric found his war work intel-
lectually challenging and satisfying, pro-
fessionally the years were a waste. The
Melbourne University Library refused him
permission to borrow books, and there
were so few mathematics books held by
the Public Library that he read them all. At
least by the end of the war he had made his
decision to pursue a career in mathematics
and not French.

Sydney 1946–47

Fortunately Eric’s demobilization was
hastened by T.G. Room, Professor of Pure
Mathematics at the University of Sydney,
who appointed Eric a Teaching Fellow in
Mathematics in 1946. The tutoring and
lecturing duties were very demanding,
including a term at Armidale teaching five
courses with a total of twelve lectures per
week. He taught a third-year Honours
course in Group Theory, a topic which he
had never studied.

Eric applied for and was awarded the
‘open’ J.B. Watt scholarship and with
encouragement from Professor Trendall
applied for entry to Trinity College, Cam-
bridge. At first unsuccessful, he was later
accepted and departed for Cambridge in
August 1947.

Cambridge 1947–53

Eric enrolled in the Cambridge Mathe-
matical Tripos. Having a Sydney honours
degree, he was permitted to take the three-
year course in two years — a mixed
blessing, since the solid two years of work
for the crucial Part II examination had to be
crammed into one. In the event, he passed
all examinations with flying colours (‘Wran-
gler’ Part II, Distinction Part III). The aca-
demic atmosphere in Cambridge at this time
was very stimulating for prospective
number theorists. Professor L.J. Mordell’s
weekly Number Theory Seminar was
attended by some twenty to thirty people,
amongst whom there were a number of
brilliant younger mathematicians. In 1949
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Eric enrolled as a research student in the
geometry of numbers with Mordell as
supervisor. A fellow student, John Chalk,
had first excited his interest in the subject
by proposing a problem that was the start-
ing point for his first paper, published in
1950.

What happened in these first years of
research is vividly expressed in his own
words: ‘So in 1949 and 1950 I ate, drank
and slept mathematics: reading and writing
out notes on or translations of papers in the
Cambridge Philosophical Society Library,
working at problems on binary quadratic
and bilinear forms and attending lecture
courses and seminars’. His achievements
over these two years were remarkable. By
mid–1950 he had written seven papers for
publication. These were submitted both for
the Smith’s Prize and for a Trinity College
Fellowship. He was successful in both
cases, the Smith’s Prize being shared with
another candidate. He was awarded his
PhD (Cantab.) in 1952.

In 1951, Eric was appointed Assistant
Lecturer in Mathematics, a three-year post
in the first instance. In June that year he
married Stewart Caird, an Australian,
daughter of William and Emily Caird of
Preston, Victoria. Their son, Peter, was
born in Cambridge in 1953. In order to
supplement the income from his lecture-
ship, Eric undertook additional tutorial and
examining work. Of his lectures at this
time, Maurice Brearley (now Emeritus
Professor of the University of Melbourne)
writes:

I was fortunate to attend a one-term course
of lectures on linear algebra by Eric in Part
2 of the Cambridge Mathematical Tripos.
His style was lucid and unhurried, his
blackboard work always impeccable. He
rarely consulted his notes during a lecture,
giving the impression that he was not work-
ing from a planned script. Each lecture,
however, ended precisely on time at a stage
where there was a natural break in the
mathematics; never was he part way
through a proof when time ran out, which

showed the whole had been meticulously
planned. Eric had a dry sense of humour, far
removed from any conscious joke. After
introducing the concept of homomorphism
he remarked: ‘One of the Morph brothers’.
The characteristic which I most appreciated
was his ability to make even quite difficult
concepts easy to grasp.

Despite his heavier teaching commit-
ments, Eric’s research continued to flour-
ish. In particular, he continued a very
fruitful collaboration already begun with
Peter Swinnerton-Dyer.

Sydney 1953–58

With increasing family commitments and a
barely adequate income from his fellow-
ship and assistant lectureship, Eric was
faced with serious decisions about his
future. Cambridge was a great centre of
number theory, in which he had established
a firm reputation and made many friends.
But he and Stewart had always intended to
return to Australia. In 1953, he success-
fully applied for a Senior Lectureship at
the University of Sydney. However, on
being informed that he had been recom-
mended for a full Lectureship in Cam-
bridge, he turned the Senior Lectureship
down. Not long after, an offer of a Reader-
ship at Sydney arrived, and this he
accepted. Eric, Stewart and their infant
son, Peter, left Cambridge in August 1953.

Before 1950, prospective research
mathematicians from Australian univer-
sities needed to undertake further study
overseas. By the early 1950s, however, the
PhD degree was becoming established in
mathematics at the University of Sydney
and elsewhere. When Eric arrived, the
Sydney department had a handful of
research students who soon included his
first PhD student, Jane Pitman. Later, he
collaborated with algebraist Tim (G.E.)
Wall on a significant joint paper. However,
like most researchers in pure mathematics
in Australia at the time, Eric had to work
mainly in isolation, in marked contrast
with his Cambridge experience.
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Despite these seeming disadvantages,
the years he spent in Sydney were some of
the most fruitful of his career in terms of
research. He also proved to be an accom-
plished lecturer at all levels, noted for his
beautifully clear and well organized
presentation.

On the personal side, Eric and Stewart
were able to settle down as a family with
reasonable financial security. Their daugh-
ter, Erica, was born in Sydney in 1956.

Eric’s brilliant research in the 1950s
soon gained recognition. In 1954, he was
awarded the Edgeworth David Medal of
the Royal Society of New South Wales. He
was elected a Fellow of the newly founded
Australian Academy of Science in the
same year and was awarded its Thomas
Rankin Lyle Medal in 1959.

Adelaide 1959–83

When H.W. Sanders retired as Professor of
Mathematics at the University of Adelaide
in 1958, the Council decided to replace him
by two professors, one in Pure Mathematics
and one in Applied Mathematics, who
would alternate as Head of Department for
periods of three years. Eric Barnes was
appointed as Elder Professor of Pure
Mathematics and moved to Adelaide with
his family in January 1959. Ren Potts was
appointed as Professor of Applied Mathe-
matics and arrived a few months later.

Eric served initially as Head of the
Department of Mathematics until the end
of 1962. The position entailed a wide range
of commitments outside the Department,
including service on some key University
committees, and his abilities soon gained
respect. From 1963 onwards, while contin-
uing his mathematical commitments, Eric
became increasingly involved in University
administration. It was a loss to mathe-
matics when he vacated the Chair of Pure
Mathematics to become one of two Deputy
Vice-Chancellors in 1975. As Deputy Vice-
Chancellor, he had major responsibility in
several areas, including academic matters

and University entrance, and chaired the
University’s Co-ordinating Committee and
the Committee of Deans. In 1980, restruc-
turing of the University’s management saw
the two Deputy Vice-Chancellor positions
discontinued after the end of their first
term, and in 1981 the two incumbents
returned to their respective departments as
Professors. Eric was warmly welcomed by
what was then the Department of Pure
Mathematics and served as elected Chair-
man in 1982. In May 1983, he took up the
opportunity of early retirement.

The Mathematics Department

In 1959, despite the presence of some very
able researchers, the Mathematics Depart-
ment was relatively inactive. It had pro-
duced only one PhD and very few honours
graduates and its main focus was on
service teaching. On the arrival of Ren
Potts the two new professors began a
friendly co-operation that helped to trans-
form the Department into an active
modern department with high standards in
both teaching and research.

The structure of the mathematics
courses was streamlined by introducing
General Mathematics, abolishing Applied
Mathematics I, and replacing Pure Mathe-
matics I by Mathematics I. Priority was
given to establishing a comprehensive
fourth-year honours course, with flexible
prerequisites. Honours projects were intro-
duced with the allocation of staff as
honours supervisors. The results were
dramatic. For the first time, Honours
Mathematics became an attractive option
for mathematically inclined students. The
number of honours students increased
from one in 1959 to twenty in 1964. The
Australian Mathematical Society coinci-
dentally started collecting and publishing
from 1959 the yearly number of honours
students graduating in the mathematical
sciences in the universities in Australia.
Adelaide soon topped the list, above much
larger universities.
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The establishment of a strong post-
graduate program was of course more pro-
tracted. A staff member graduated with a
PhD in 1961, two students in 1964, three in
1966, four in 1967 and seven in 1968. In
the yearly lists mentioned above, Adelaide
was soon near the top.

A separate Department of Computing
Science was already established and in
1968 Statistics separated from Mathe-
matics to form its own department. In 1970
the applied mathematicians proposed a
further split into Pure and Applied Mathe-
matics. Although Eric was not in favour, he
did not oppose it and years later he wrote
that the move was ‘completely vindicated’.
The separation took effect in 1971, with
Eric and Ren as the Heads of the two new
departments which continued to co-
operate closely and shared some staff. The
new structure helped provide a firm foun-
dation for the establishment of the Faculty

of Mathematical Sciences for which Eric
was to prove the strongest advocate and its
first Dean in 1973. The Faculty comprised
five departments, Pure, Applied, Statistics,
Computing Science and (also in Science)
Mathematical Physics. The new Faculty
was by student numbers the third largest in
the University (behind Arts and Science).
Its new degree provided the flexibility
required by the growth of the mathematical
sciences and their links with many other
areas.

Between 1959 and 1974, Eric gave
effective academic leadership in all aspects
of the work in pure mathematics, including
teaching, research, supervision of research
and honours students, and on-going curric-
ulum development.

The University

Eric gave extensive and dedicated service
to the University in terms of administra-

Figure 1. Professor Barnes lecturing on geometry of numbers in 1982.
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tion, committee service and service on
behalf of the University to outside bodies.
Apart from his terms as Head of Depart-
ment, Faculty Dean and Deputy Vice-
Chancellor, his service included terms as
Chief Examiner in Mathematics for the
Public Examinations Board (for many
years), Chairman of the Board itself,
Chairman of the Board of Research
Studies, Chairman of the Education Com-
mittee (now the Academic Board), and
elected member of the University Council.

Professional service

During his time in Adelaide, Eric was
active in the wider mathematical and
scientific community.

Through his early work as Chief Exam-
iner in Mathematics and the associated
chairmanship of the Mathematics Syllabus
Committee, he soon established friendly
relations with local school mathematics
teachers and went on to play a leading role
in connection with school mathematics.
With the support of A.W. Jones of the State
Education Department, Eric was respon-
sible for establishing the Mathematical
Association of South Australia (the state
professional association of mathematics
teachers) and became its foundation Presi-
dent (1959–61). He gave practical help to
teachers through presentations at confer-
ences of the Association and especially by
writing a useful textbook (see (47) in the
Bibliography below) jointly with mathe-
matics teacher Bruce Robson.

Eric was a foundation member of the
Australian Mathematical Society (from
1956) and served the Society in a number
of roles, including President (1962–64),
Council Member, Director of the Summer
Research Institute (1962), and member of
the Editorial Board, and later Associate
Editor (1967–1974), of the Society’s
Journal. While in Adelaide he also served
the Australian Academy of Science as
Council Member (1962–64) and Secretary,
Physical Sciences (1972–76).

Teaching

During the early 1960s, both the new pro-
fessors taught mathematics at first- and
second-year levels. This helped to establish
the curriculum and attract the interest of
students. Eric’s meticulous lecture notes
were extremely useful to the lecturers who
took over subjects he had taught and set a
high standard of preparation.

The outstanding quality of Eric’s teach-
ing was immediately recognised. Both in
the early 1960s and in 1982, students par-
ticularly appreciated his teaching of
second-year Pure Mathematics. Eugene
Seneta (now Professor of Mathematical
Statistics at the University of Sydney)
writes1 (see References below) that ‘he
heavily influenced the direction of my
future work through his lucid teaching of
Pure Mathematics 2 in 1961’.

Much of Eric’s teaching was at third-
year and honours levels, and his honours
courses attracted graduate students and
staff members as well as honours students.
While most of his honours courses were on
topics in number theory, including the
geometry of numbers, there were occa-
sional exceptions. A notable example was
his 1962 course on Linear Inequalities,
mentioned by several of those who
attended, including Seneta. Eric’s interest in
this then new topic had been stimulated by
A.W. Tucker on a visit to Sydney, and it was
highly relevant to his own research. The
course was an eye-opener and formed the
basis of extensive and continuing research
on mathematical programming by some of
the more applied students and staff.

Research and scholarly work

In the decade 1962–72, Eric supervised five
successful PhD students, Tom Dickson,
Paul Scott, Rod Worley, Peter Blanksby (for
two years) and Dennis Trenerry. He
assisted in supervising the MSc work of
staff member Marta Sved, who went on to
further research and a PhD, and also super-
vised the MSc work of the late Christopher
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Nelson, who submitted his one paper2 in
1972, the year before, sadly, he was
drowned in floods in New South Wales. All
six of Eric’s PhD students proceeded to
careers in university mathematics and to
further research, and three, Pitman, Scott
and Blanksby, joined the Adelaide depart-
ment. He gave his research students signifi-
cant and challenging research problems,
and their publications bear witness to his
influence. Paul Scott (who recently retired
as Associate Professor at the University of
Adelaide) writes that ‘Eric’s main legacy to
me was the ability to write clear and
concise mathematics’ and ‘I feel privileged
to have had Eric first as my mentor, and
later as a colleague’.

As might be expected in view of his
many other commitments, Eric’s own
research output slowed markedly after he
took up the Chair in Adelaide. However,
during the next twelve years or so, his work
gained increasing recognition, and papers
in the geometry of numbers by his students
(some joint with Eric) appeared at a steady
rate. Leading international number theo-
rists visited Adelaide, and Eric’s involve-
ment ensured that the newly established
Journal of the Australian Mathematical
Society published papers in number theory
by both international and local authors. By
the early 1970s, Adelaide was among the
half dozen internationally recognised
centres of progress in the geometry of
numbers, of which the largest was the
Moscow/Leningrad school centred on the
Steklov Institute in which B.N. Delone and
S.S. Ryškov were leading figures.

An Australian Research Grants Commit-
tee award enabled Eric to appoint a Post-
doctoral Fellow for 1974–76 for a project
related to his recent research and to corre-
spondence with Ryškov. The appointee was
Michael Cohn (former research student of
Paul Scott and of C.A. Rogers, London),
and the project was very successful.

While at Adelaide, Eric had three
periods of overseas leave. In 1965, he and

his family spent a year of study leave in
Kuala Lumpur and Bangkok, part of the
aim being to further mathematics educa-
tion in the region. In 1975 he had a two-
month overseas study tour as Deputy Vice-
Chancellor, and in 1981 he had a full year
of study leave. Early in 1981 he met Neil
Sloane (then of Bell Telephone Labora-
tories, New Jersey), with whom he began
research collaboration. A visit to the US
and Canada later in the year provided
further opportunity for work with Sloane.

Personal

Eric Barnes was an exceptionally quick
and incisive thinker with an excellent
memory. He devoted time and hard work to
any matter which he took up and had a
remarkable ability to master complex
detail and identify the essentials. He was
also a gifted expositor whose presentations
were clear, logical and appropriate to their
audiences. These qualities underlay his
mathematical research and teaching and
contributed greatly to his work in adminis-
tration and academic management.

Eric’s intellectual abilities could at
times be daunting, and by nature he had a
low tolerance for inaccuracy. In debate on
large University committees, these charac-
teristics sometimes led to an abrasive style
of argument.

Eric gained and retained the respect and
affection of his colleagues in pure mathe-
matics. While he could argue cogently for
his own point of view at departmental meet-
ings, he was not dominating and was very
much the opposite of a ‘God-Professor’. He
had a genuine concern for students at all
levels and took a special interest in students
from overseas, mathematically gifted stu-
dents, and those who did not quite fit the
system. His colleagues found him
approachable, supportive and encouraging,
particularly to new arrivals, those with less
experience, and new researchers.

Among Eric’s recreational interests
were music, bridge, chess, reading and a
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love of language and words. He could
lighten the atmosphere with a witty turn of
phrase and he remained fluent in idiomatic
French. He was a competent pianist and
those who were there remember a happy
Mathematics Department party at the
home of the Potts family, around 1963,
when musical entertainment was provided
by a trio (Eric Barnes, piano, George
Szekeres, viola, Ren Potts, clarinet) and
novice pianist Maurice Brearley.

In 1984 the E.S. Barnes Prize (for third-
year Pure Mathematics) was established,
thanks to former students, friends and col-
leagues, in recognition of his contribution
to pure mathematics.

Later Years

From the 1960s, Eric had to cope with
some health problems, in particular, a
chronic respiratory condition. By the early
1980s these problems had increased and
this was a factor in his early retirement.
After retirement his health gradually dete-
riorated, but he maintained contact with
the Pure Mathematics Department as an
Honorary Visiting Research Fellow and
participated actively in the weekly Number
Theory Seminar until 1992.

In his last few years Eric was house-
bound and had occasional visits to hospi-
tal. He died on 16 October 2000.

Mathematical Work

Apart from his admirable note (41) (see
Bibliography below) and his contributions
to the books (47), (48) and (49), Barnes’s
mathematical publications belong to the
geometry of numbers. We start with some
necessary background and then indicate
the main themes of his work.

Background

Classical problems in number theory
include not only Diophantine equations but
also Diophantine inequalities. A typical
homogeneous Diophantine inequality of
degree 2 is

|x2 + xy + y2| ≤ 1,

where we seek non-null integral solutions,
that is, solutions x = u, y = v such that u and
v are integers (0, ± 1, ± 2,…), not both
zero. There are also corresponding
inhomogeneous inequalities involving a
polynomial in x and y whose terms are not
all of the same degree.

Consider a plane with a standard rectan-
gular Cartesian co-ordinate system. The
‘integral lattice’, which consists of all
points whose co-ordinates are integers, is a
particular example of the concept of
‘lattice’. Investigation of a problem on
Diophantine inequalities in two variables is
often helped by consideration of an equiva-
lent geometrical problem on lattice points
in a region of the plane.

More general Diophantine inequalities
involve forms of degree k in n variables.
These are homogeneous polynomials of
degree k with real coefficients, in n real
variables. Such a form is binary if n = 2,
ternary if n = 3. A form is quadratic if it
has degree 2, integral if its coefficients are
integers, indefinite if it takes both positive
and negative values, and positive, or posi-
tive definite, if its value is always positive
except when all variables are zero.

The geometry of numbers is a major
branch of number theory that was intro-
duced by Minkowski in the 1890s. The
subject deals with n-dimensional lattices
and their relationship to bodies in
n-dimensional space for all n ≥ 2. It
provides an effective geometrical frame-
work for many problems on Diophantine
inequalities and has important applications
both within and beyond number theory.

Main themes

Barnes’s research publications can be con-
veniently grouped under three headings: 

Indefinite forms — Part 1,
Indefinite forms — Part 2,
Positive quadratic forms and lattices.
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The work on indefinite forms began in
Cambridge, continued in Australia, mainly
during the 1950s, and provided topics for
the theses of Pitman, Worley and Blanksby.
Part 1 of this work deals with homo-
geneous Diophantine inequalities for
indefinite forms and uses purely arithmetic
methods. Part 2 deals with inhomogeneous
inequalities for indefinite binary quadratic
forms and related topics, and uses two-
dimensional lattices.

From the mid-1950s onwards, Barnes’s
major research interest was in positive
quadratic forms in n variables and
n-dimensional lattices. This theme pro-
vided topics for the theses of Scott,
Dickson, Trenerry and Nelson, and also for
the major research project with Cohn. The
problems Barnes considered include both
homogeneous and inhomogeneous
inequalities for positive forms. These are
equivalent to problems on packing and
covering of n-dimensional space with
equal spheres whose centres are at the
points of a lattice.

Barnes was interested in solving
specific problems rather than in developing
abstract theory, and his preferred mathe-
matical tools were those of discrete mathe-
matics and geometry. The research
problems in the geometry of numbers
which he addressed fitted well with these
tastes, gave scope for all his intellectual
abilities and mathematical powers, and
required, in addition, a high degree of
creative insight. The results he obtained are
almost all in some sense best possible, and
all his papers bear the hallmarks of his
style: clarity, economy and beautiful
organization.

We shall discuss Barnes’s work on each
of the three main themes further below.
The papers considered in more detail have
been selected to reflect the range of his
main work. We give some background to
place the work in context.

References

References (1), (2), etc., are to the Biblio-
graphy of Barnes’s publications at the end
of this article. References such as Cassels3

are to the list of References immediately
before the Bibliography. Standard refer-
ences for the geometry of numbers are
Cassels3 and Gruber-Lekkerkerker4. Refer-
ences such as GL, 17, or GL, xi, are to
sections (17 or xi) of Gruber-
Lekkerkerker4.

Indefinite Forms — Part 1

Background on indefinite binary quadratic 
forms

We denote by R2 the space of all real
vectors x = (x, y) (viewed as points of the
plane) and by Z2 the lattice of all integral
points u = (u, v). Consider a binary quad-
ratic form

f = f(x, y) = ax2 + bxy + cy2

with real coefficients a, b, c and discrimi-
nant d(f) = b2 – 4ac � 0. We investigate the
values f(u) for u = (u, v) in Z 2, and
particularly the homogeneous minimum

M(f) = inf |f(u, v)| (u, v integers, not both 0),

where ‘inf’ means infimum, or greatest
lower bound.

A linear transformation T on R2 maps
Z2 onto itself if and only if its 2×2 matrix
has integral entries and determinant ± 1.
We shall call such a transformation T an
automorph of Z2. A binary quadratic form
g is equivalent to f if g(x, y) is identical
with f[T(x, y)] for some automorph T of Z2.
In this case, d(g) = d(f), the set of all values
g(u) with u in Z2 coincides with the set of
all f(u) with u in Z2, and M(g) = M(f). The
value of M(f) / |d(f)|1/2 is unchanged if f is
replaced by a form equivalent to a non-
zero multiple of f. The concepts of homo-
geneous minimum and equivalence are
easily extended to any form in any number
of variables.
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For a form f as above with discriminant
d(f)=d and homogeneous minimum
M(f)=M, suppose that f is indefinite (d >0).
Then

M ≤ 5–1/2 d1/2,

with equality if and only if f is equivalent
to a multiple of F0 = x2 – xy – y2. However,
if equality does not hold, then

M ≤ 8–1/2 d1/2,

so that the constant 5–1/2 is ‘isolated’. This
first example of isolation was discovered
by Korkine and Zolotareff in 1873, and led
to Markoff’s major study published in
1879–80. Markoff found a remarkable infi-
nite sequence of forms F0, F1, F2, … (now
the Markoff forms). The strictly decreasing
sequence of values Md–1/2 for these forms
starts with 5–1/2, 8–1/2, 5(221)–1/2,… and
converges to 1/3. Markoff’s main result is
that M is at most d1/2/3 unless f is equiva-
lent to a multiple of some Markoff form.

Much more is now known about the
structure of the set of all possible values of
Md–1/2, which provides a standard of com-
parison for the ‘spectra’ of constants
arising in other problems. (The reciprocals
d1/2 M–1 form the ‘Markoff spectrum’.)

For the work above, Markoff used an
early version of the now classical contin-
ued fraction method. Since much of
Barnes’s work on indefinite forms relies on
this method, we indicate the main ideas.

Suppose again that f = ax2 + bxy + cy2 is
indefinite with d(f) = d >0 and M(f) = M.
The equation ax2 + bx + c = 0 has real
solutions θ, Φ with |θ| ≤ |Φ|, called the
roots of f. We assume that a ≠ 0 and the
roots are irrational (otherwise M = 0).
Starting from a suitable equivalent form f0
with roots θ0, Φ0, we obtain a two-way
infinite sequence of positive integers

…, a–2, a–1, a0, a1, a2,…

from the regular (or ‘ordinary’) continued
fractions

–Φ0 = (a1; a2 a3,…)

 ,

1/θ0 = (a0; a–1, a–2, …).

The ai determine a corresponding
sequence of equivalent ‘reduced’ forms fi
(these are unrelated to the Markoff forms
Fi).

If u, v are integers, not both zero, such
that |f(u, v)| < d1/2/2 then f(u, v) is equal to
fi(1, 0) for some i. Since there is a simple
formula for fi(1, 0) in terms of continued
fractions, this gives us a powerful tool for
studying these values f(u, v).

Restricted homogeneous minima of 
indefinite forms

The papers (2) to (7) cover Barnes’s sub-
stantial early research in Cambridge [apart
from (1)]. The interrelated papers (2) to (6)
deal with ‘restricted’ minima of certain
indefinite forms, and the same circle of
ideas includes (7) and the later paper (17).
All of this work depends on masterly use
of the continued fraction method and
sequences of reduced forms, for relevant
binary quadratic forms.

The restricted homogeneous minimum
of a form f(x, y, z, t) in four variables is the
infimum of the values of |f(x, y, z, t)| at
integral values of the variables satisfying
xt – yz = ±1. Within this context, we denote
this restricted minimum by M(f).
Davenport and Heilbronn had studied
M = M(f) for f = (ax + by)(cz + dt) where  ∆
= ad – bc ≠ 0. (See last paragraph of GL
43.2.) In contrast to Markoff’s results for
binary forms, they found that the third
largest value of M ∆–1 is not isolated.

In (2) to (4) Barnes considered the form
f(x, y, z, t) given by f = q(x, y)q(z, t) where q
is an indefinite binary quadratic form with
discriminant d=d(q). In (2), he studied the
values of Md–1, where M = M(f). He found
a sequence of quadratic forms Q–1, Q0, Q1,
Q3, Q5,… and demonstrated a remarkable

 = a1 +     
           1

a2 + 1/(a3 + …)
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analogue of the Markoff phenomenon for
the forms hi = Qi(x, y)Qi(z, t): The values of
Md–1 for the hi form a strictly decreasing
sequence converging to a specified limit C
and Md–1 is at most C except when q is
equivalent to a multiple of some Qi. The
papers (3), (4) deal with restricted minima
associated with ‘asymmetric’ and ‘one-
sided’ inequalities for f as above. They
include further instances of Markoff phe-
nomena, some of which contrast with
known results for binary forms.

In (5), Barnes proved the theorem of
Davenport and Heilbronn mentioned above
by the methods of (2). This led to his study
in (6) of best possible upper bounds for the
restricted homogeneous minimum M(f) of
a more general ‘bilinear’ form f(x, y, z, t).

One-sided inequalities for indefinite 
quadratic forms

Three 1955 papers on indefinite quadratic
forms stemmed from a visit to Sydney by
A. Oppenheim. One, (17), was mentioned
above. Before discussing the others, we
need some further vocabulary.

The matrix of a ternary quadratic form
f(x1, x2, x3) is the 3×3 symmetric matrix
A = [aij] such that

f(x) = f(x1, x2, x3) = Σ aij xi xj ,

with summation over all i, j such that 1 ≤ i
≤ 3, 1 ≤ j ≤ 3. The determinant of f is detA
(the determinant of A). If this is non-zero
then f can be expressed as ± L2

1  ± L2
2  ± L2

3 ,
where the Li are linear forms, and f is said
to be of type (r, s) when there are r plus
signs and s (=3–r) minus signs. If f is
indefinite, its non-negative minimum M+(f)
is the infimum of the non-negative values
taken by f at integral values of the varia-
bles, not all zero, and its positive minimum
is defined similarly. (These may differ
because there may be non-null integral
solutions of f(x)=0). These concepts extend
to quadratic forms in n variables for any n.

In 1953 Oppenheim had given best pos-
sible upper bounds for the positive minima

for n = 3, 4 (see GL, 44.4). In (18), Barnes
addressed the more difficult corresponding
problem for M+(f), and this work was
further extended in the joint paper (20)
with Oppenheim. For n ≥ 2, r ≥ 1 and s ≥ 1,
we consider all indefinite quadratic forms f
in n variables of type (r, s) with non-zero
determinant D. The constant κr, s is the least
positive constant such that for all such
forms f we have

M+(f) ≤ (κr, s |D|)1/n.

The cases n = 2, 3, 4 are the only ones
of interest since, thanks to the 1987 break-
through of Margulis (see Dani and
Margulis5) we now know that the positive
minimum of f is zero if n ≥ 5.

For n = 2, it was known (see GL, xiv.4)
that κ1, 1 is 4 and is not isolated. In (18),
Barnes obtained a key lemma on positive
values of indefinite binary quadratic forms
by the continued fraction method. Using
this, he showed that κ2,1 is 4/3 and is
isolated, and derived upper bounds in the
other cases with n = 3, 4. The co-operation
with Oppenheim yielded the values of κ1, 2
and κ2, 2.

Later, in his thesis, Worley studied
indefinite ternary quadratic forms and
achieved major progress on asymmetric
and one-sided inequalities (see Worley6, 7).

The work on κr, s was carried further by
Worley8, and by Jackson, who, in particu-
lar, evaluated κ3, 1 (see GL, xiv, for refer-
ences). It seems that κ1, 3 has still not been
precisely determined.

As well as being of independent inter-
est, results on one-sided and asymmetric
inequalities often play an important role as
auxiliary results in other problems. For
example, the value of κ2, 1 was essential to
Barnes’s later work in (22) and was used
similarly by Raka9.

Indefinite Forms — Part 2

Let f = f(x, y) be an indefinite binary
quadratic form with discriminant d(f) >0.
For each real αααα = (α, β), let
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m(f; α, β) = inf |f(u + α, v + β) | (u, v integers),

and write

m(f; α, β) = m(f, αααα).

If (α', β') ≡ (α, β) (mod 1), that is α' – α
and β' – β are integers, then m(f; α', β') is
equal to m(f; α, β). The inhomogeneous
minimum m(f) is the supremum, or least
upper bound, of the values of m(f; α, β) for
all real α, β:

m(f) = sup m(f; α, β) (α, β real).

The behaviour of m(f) under equivalence
of forms is exactly similar to that of the
homogeneous minimum M(f).

The inhomogeneous minimum of any
form in any number of variables is defined
similarly. The concept arises naturally in
algebraic number theory. For quadratic
forms it can be interpreted in terms of
lattice coverings of Euclidean space.

We now look at the contributions of
Barnes related to inhomogeneous minima
of indefinite binary quadratic forms.

Two-dimensional lattices and Minkowski’s 
theorem

Let s1x + t1y and s2x + t2y be two real linear
forms whose coefficient matrix

has non-zero determinant. The product

f = (s1x + t1y) (s2x + t2y)

is an indefinite binary quadratic form with
discriminant (detL)2. Every indefinite
binary quadratic form can be factorised in
this way and the linear factors are unique
up to suitable multiples.

The two-dimensional lattice determined
by the two given linear forms, or equiva-
lently by the matrix L, consists of all points
w = (w1, w2) such that for some integral u
and v we have

w1 = s1u + t1v ,

w2 = s2u + t2v .

(The vectors s = (s1, s2), t = (t1, t2) form a
‘basis’ of Λ.) If Λ is also determined by a
matrix L' then |detL'| = |detL|, and so the
determinant of Λ is uniquely defined as
det Λ = |detL|.

Minkowski proved the following
seminal theorem geometrically in the
1890s. Let Λ be the lattice determined by
two real linear forms L1(x, y), L2(x, y) with
non-zero determinant. Then for each point
γ = (γ1, γ2) in the plane there is a point
w = (w1, w2) of Λ such that

|(w1 + γ1)( w2 + γ2)| ≤ 1/4det Λ.

Equivalently, in terms of forms: Let f
(=L1L2) be an indefinite binary quadratic
form with discriminant d(f) = d. Then for
each real αααα = (α, β) there is an integral
vector u such that

|f(u + αααα)| ≤ 1/4d1/2.

Thus m(f, αααα) is at most d1/2/4 for all real αααα
and the inhomogeneous minimum
m = m(f) is at most d1/2/4. Minkowski’s
constant 1/4 is best possible but is not
isolated.

Interest in improving Minkowski’s
theorem led to detailed study of particular
forms f and investigation of alternative
upper bounds for m(f). Heinhold in 1939
and others studied the ‘principal norm
forms’ of real quadratic fields. (See GL,
47.5.) These are of special interest because
their inhomogeneous minimum is con-
nected with the question of whether or not
the field is Euclidean, that is, its domain of
‘integers’ has a ‘Euclidean algorithm’ (and
hence has the unique factorisation
property).

In (1), Barnes obtained an upper bound
which is often sharper than Minkowski’s:
If f = ax2 + bxy + cy2 is indefinite with
inhomogeneous minimum m = m(f) then

m ≤ 1/4max {|a|, |c|, min |a ± b + c|}.

L
s1 t1

s2 t2

=
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He gave some significant applications,
including simple verification of most
known examples of Euclidean real
quadratic fields. Related work is discussed
in GL, 47.4.

The automorph method

While in Cambridge, Barnes pursued the
theme of (1) further in major collaborative
research with Swinnerton-Dyer. They used
two different approaches, both highly geo-
metrical, and from then onwards Barnes’s
work was underpinned by geometrical
ideas, even when the details were arithmet-
ical.

In the joint papers (8),(9) they studied
the inhomogeneous minima of norm forms
of real quadratic fields. For square-free
integral k >1, the field Q( ) is obtained
by adjoining  to the field Q of rational
numbers and its principal norm form is

gk = x2 + xy – 1/4(k – 1)y2

if k – 1 is divisible by 4, and, otherwise,

gk = x2 – ky2.

For this purpose, Barnes and
Swinnerton-Dyer developed what we shall
call the automorph method, a general geo-
metric method applicable to integral forms
(or multiples thereof).

Consider an integral indefinite form f =
ax2+bxy+cy2 with a ≠ 0, irrational roots,
and inhomogeneous minimum m = m(f).
An automorph of f is an automorph T of Z2

such that the form f [T(x, y)] is identical
with ±f(x, y). The integral form f has
automorphs T of infinite order, and the
method is based on the fact that, for such T
and real αααα = (α, β), we have

m[f; T(αααα)] = m(f; αααα).

An important role is played by the orbit
(mod 1) of αααα under T for certain ‘excep-
tional’ points αααα. In (8), Barnes and
Swinnerton-Dyer obtained a group of
theorems which together provide a firm
theoretical basis for finding m by this

approach. In (8) and (9) they also gave some
general theorems on m(f; αααα) for given inte-
gral f. In particular, the set of all values of
m(f; αααα) is closed.

For real f, let m2 = m2(f) be the supre-
mum of the values of m(f; αααα) which are
strictly less than m = m(f). Clearly m2 ≤ m.
If m2 < m then the minimum m is isolated
and m2 is the second (inhomogeneous)
minimum of f. If m2 is isolated there will be
a third minimum m3 < m2, and so on. As
conjectured in (9) and later shown by
Godwin,10 the second minimum m2 of f
need not be isolated even if f is integral.

Barnes and Swinnerton-Dyer used the
automorph method to study m = m(f) for
the norm form f = gk in many cases,
including all square-free k ≤ 101. In (8)
they presented theorems covering different
possibilities and tabulated their results,
many of which were new, with references
for known results. In all but a handful of
cases, they evaluated m and found the
points  at which m(f; αααα) takes this value,
and often they also evaluated m2. Later, by
a modification of their method, Godwin11

filled the remaining gaps for k ≤ 101.
In (9), Barnes and Swinnerton-Dyer

extended the automorph method to deal
with an infinite sequence of minima
m = m(f), m2, m3, … and studied the norm
forms f = gk for k = 11, 13 in detail. For
k  =  11, they found an analogue of the
Markoff phenomenon, and their results are
similar to those obtained earlier by
Davenport for k = 5 and Varnavides for
k = 2 (see GL, end of 47.5, for references).
The norm form f for k = 13 has unusual
properties, and the results for this case are
surprisingly complicated.

Barnes and Swinnerton-Dyer conjec-
tured in (9) that for all integral indefinite
binary quadratic f the inhomogeneous
minimum m is always rational, isolated,
and taken by m(f; αααα) at some rational point
αααα = (α, β) with α, β both rational. See
Berend and Moran12 for progress towards
this.

k
k
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Euclidean real quadratic fields

For square-free k >1, the real quadratic
field Q( ) with norm form f = gk is
Euclidean if and only if m(f; αααα) <1 for all
rational points αααα = (α, β). A 1951 theorem
of Davenport led via this criterion to com-
pletion of the proof that there are no
further real Euclidean quadratic fields
beyond those on the ‘classical’ list of 17
Euclidean fields, all with k <101. (See
Ennola13 and GL 48.3.) The results of (8)
(9) and Godwin11 confirmed these conclu-
sions for all square-free k ≤ 101, with one
exception. Barnes and Swinnerton-Dyer
showed in (8) that the last field on the list,
Q( ), had been wrongly listed as
Euclidean. In 1958 Ennola13 improved the
Davenport result and drew on ideas from
several articles [in particular (1) and (8)] to
give the first unified proof of the correct-
ness of the final list of 16 values of k for
which Q( ) is Euclidean. Barnes made
further contributions related to this topic in
the later papers (31) and (39).

Background on Delone’s geometric divided 
cell algorithm

The second method of Barnes and
Swinnerton-Dyer is the divided cell
method, based on a geometric algorithm
for inhomogeneous problems introduced
by Delone14 in 1947. (See GL, 48.1 for a
detailed account. The automorph method
and the significant further developments
discussed below are not covered in GL.)

Delone’s algorithm is formulated in
terms of grids. A grid Γ associated with a
two-dimensional lattice Λ is a translate of
Λ, Γ = γ + Λ, for some specified real point
γ = (γ1, γ2). The points of Γ and the lines
they determine are called grid points and
grid lines, and the determinant of Γ is
detΛ. A parallelogram P whose four verti-
ces are grid points is a cell of Γ if there are
no other grid points inside P or on its
boundary, or, equivalently, if P has area
det Γ. A cell is divided if, further, it has

one vertex in each of the four quadrants
determined by the axes x = 0, y = 0.

Suppose a grid Γ has no grid point on
either of the axes and no grid line parallel
to an axis. Delone showed that Γ has at
least one divided cell, C0, say, and gave a
simple geometric algorithm which starts
from C0 and yields a two-way infinite chain
of divided cells which includes all divided
cells of Γ:

…, C–2, C–1, C0, C1, C2,…

He obtained basic results on divided cells
and gave some significant applications.

Inhomogeneous problems on indefinite
binary quadratic forms are equivalent to
problems on the value of xy at grid points
(x, y) of an appropriate grid Γ. The divided
cell algorithm is important because in
order to determine the infimum of |xy| for
all grid points, or for all grid points in a
certain quadrant, it is sufficient to consider
grid points which are vertices of divided
cells.

The divided cell method for asymmetric 
inequalities

For real τ ≥ 1, consider grids Γ with no grid
point in the asymmetric region –1 <xy <τ,
and let D(τ) be the infimum of their deter-
minants. In (15) Barnes and Swinnerton-
Dyer extended the divided cell method to
study D(τ) (see GL, 50.1, regarding related
work). They first gave a full presentation of
the basic theory and obtained formulas for
the vertices of the divided cells in terms of
two sequences of integers ai and εi which
arise from Delone’s construction. The
results involve ‘semi-regular’ continued
fractions of a special type, together with
series expansions.

A grid is symmetric if one of its cells
has the origin (0, 0) as its centre. Such
grids have all εi = 0 and are easier to
handle. Barnes and Swinnerton-Dyer
proved that symmetric grids are sufficient
for evaluation of D(τ) and extended the
theory further for this type of grid. They

k
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obtained lower bounds for D(τ) and illus-
trated both the power of the method and
the complex nature of D(τ) by precise
evaluation of D(τ) for τ near 2. In 1991,
Grover and Raka15 revisited this work,
filled a gap in (15), and used the method
for further detailed study of D(τ).

Davenport had used results on inhomo-
geneous asymmetric inequalities for
binary forms to obtain the analogue of
Minkowski’s constant for an indefinite
ternary quadratic form f(x, y, z) with non-
zero determinant (see GL, 49.4). In the
major papers (14) and (22), Barnes used
the divided cell method for asymmetric
inequalities to carry this work much fur-
ther. In (32), without using (15), he also
gave another proof of a result of Blaney on
one-sided inhomogeneous inequalities for
indefinite ternary quadratic forms (see GL,
50.3). In 1993, Raka9 obtained a major
extension of this result by using some of
the work of Grover and Raka mentioned
above, together with other auxiliary
results.

The divided cell method for 
inhomogeneous minima of forms

Let f(x, y) be a real indefinite binary quad-
ratic form with irrational roots and
inhomogeneous minimum m = m(f). The
evaluation of m is equivalent to a problem
on vertices of divided cells in terms of
associated sequences of integers ai and εi.
However, this is more difficult than the
problem in (15) because infinitely many
different sequences of ai must be consid-
ered and the εi are in general non-zero. In
the important paper (16), Barnes overcame
these difficulties by deriving further theo-
retical results on the divided cell method.
He thus developed the method as an arith-
metical tool for the study of m(f) for real
forms f as above. He illustrated its advan-
tages over the automorph method by
applying it to the relatively difficult norm
forms f = gk with k = 19 and k = 46
(correcting (8) for k = 19).

In (21) Barnes modified the divided cell
method to deal with the inhomogeneous
Diophantine approximation constants
k(θ, β), k+(θ, β), for positive irrational θ and
suitable real β. These constants are related
to Diophantine inequalities of the type

|x(θx – y – β)| <C

with the conditions x ≠ 0 or x >0. As easy
applications, Barnes gave short proofs of
two parallel theorems on these constants.
The first strengthened a much earlier result
of Morimoto (Fukasawa)16 (whose other
work seems to have been neglected in the
literature).

In their theses Pitman and Blanksby
gave further major applications of the
divided cell method and supplemented the
theory (see Pitman17, 18, Blanksby19, 20).

Recent developments

In the decade from 1973, research on
inequalities for indefinite binary quadratic
forms concentrated mainly on homo-
geneous problems involving the Markoff
spectrum and related topics. Since about
1990 there has been renewed interest in the
inhomogeneous problems investigated by
Barnes, with emphasis on the whole spec-
trum of values of m(f; αααα) or k(θ, β) or k+

(θ, β) for fixed f or θ. In particular, William
Moran (who succeeded Barnes in the Chair
of Pure Mathematics at the University of
Adelaide) and his collaborators have con-
tributed in this area. The divided cell
method remains a powerful tool, and
investigation of new approaches to the
automorph method and the ideas of (8), (9)
and (15) has begun. Berend and Moran12

used the methods of topological dynamics
to study the values of m(f; αααα) for indefinite
binary quadratic f. Recent developments
are further illustrated by the work of Grover
and Raka15 and the paper of Raka9 men-
tioned earlier, and by the papers of Cusick,
Moran and Pollington21 and of Pinner22 on
inhomogeneous approximation.
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Positive Quadratic Forms and Lattices

From the mid-fifties on, Barnes’s major
research interest was in positive quadratic
forms in n variables and their associated
lattices of points in n-dimensional space.
The standard reference work in the area is
Conway-Sloane.23

Mathematical background

For n ≥ 3, n-dimensional lattices are a
natural extension of the case n = 2 dis-
cussed earlier. We give an informal
account of the geometry of 3-dimensional
lattices. In the process, some of the basic
ideas of the general n-dimensional theory
will be introduced.

Consider 3-dimensional space as in
Euclidean geometry with one point O per-
manently selected as origin, and let A,B,C
be points such that O,A,B,C are not copla-
nar. The (3-dimensional) lattice Λ with
basis , ,  consists of all points
P such that

for some integral u, v, w. The parallel-
epiped Π determined by O and the basis
vectors is the solid body made up of all
points Q such that

for real numbers x, y, z in the interval [0, 1].
A parallelepiped is a cell of Λ if its 8

vertices are all lattice points (i.e. points of
Λ) and it has the same volume as Π. In
particular, Π itself is a cell, and every cell
with O as a vertex is obtained similarly
from some basis , , .

A lattice is unimodular if its cells have
volume 1. Since every lattice is just an
expanded or contracted version of a uni-
modular one, it is often appropriate to
confine attention to unimodular lattices.
Two lattices are said to belong to the same
congruence class if they are congruent in
the usual sense of Euclidean geometry and,
if so, their cells have the same volume.

We now look more closely at the geo-
metry of an individual lattice Λ. Expand
each lattice point to a sphere of fixed
radius r, assuming for the moment that no
two spheres overlap. Then the proportion
of space covered by the spheres is just the
volume of a sphere divided by the volume
of a cell. Even when the spheres overlap,
this number still makes sense as a ‘cover-
ing ratio’.

Two cases are of particular interest.
They are related to two lattice constants
M = M(Λ) and m = m(Λ). To simplify the
present discussion, we assume that Λ is
unimodular, so that the covering ratio
above becomes simply 4πr3/3.

The more obvious constant, M, is the
minimum squared distance between dis-
tinct lattice points. When r = M1/2/2,
certain of the spheres will touch but no two
will actually overlap. In other words, this
value of r provides the closest packing of
equal spheres with centres at the lattice
points. The corresponding packing density
is 4π(M1/2/2)3/3 = πM3/2/6.

The mathematical problem that arises
here is to determine the congruence class
(or classes) for which the packing density
is greatest. Gauss solved this problem in
1831, confirming the conjecture that the
maximum packing density is π /6 =
0.74….

In defining the other constant, m, we
borrow an image from Conway-Sloane: the
points of space are where children live,
schools are at the lattice points and a child
attends the nearest school; m1/2 is then the
greatest distance any child has to go to
school. A little thought shows that r = m1/2

is the smallest radius for which the spheres
cover the whole of space. In other words,
this value of r yields the thinnest covering
of space by equal spheres with centres at
the lattice points. The covering density is
4πm3/2/3. The corresponding mathematical
problem turns out to be harder than the
packing problem. Only in 1954 was it
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shown by Bambah that the minimum
covering density is 5 π/34 = 1.46 … .

The above ideas can be translated into
the language of coordinate geometry. This
provides the link to positive quadratic
forms and is an essential step in generaliz-
ing the theory to higher dimensions.

Let Λ be a lattice with basis , ,
 as described earlier. Real coordinates

x = (x, y, z) are then assigned to each point
P of space via the vector equation

,

the points of Λ itself being those with
integral coordinates. If the basis vectors
are mutually orthogonal vectors of
length 1, we have an ordinary rectangular
Cartesian coordinate system and the dis-
tance OP is given by the familiar formula
OP2 = x2 + y2 + z2. In general, OP2 is a
more complicated quadratic form f(x) in x,
y, z. By its meaning, f is positive. It is a
standard result of linear algebra that every
positive quadratic form arises in this way
from a suitable lattice Λ.

We say that the form f above is a
distance function of Λ and that Λ is a
lattice associated with f. It can be shown
that the determinant of f is the square of the
volume of a cell of Λ. Accordingly, f is
called unimodular if its determinant is 1.

Consider another basis , , 
of Λ and let the new coordinates of P and
corresponding distance formula be X=
(X, Y, Z) and OP2 = F(X). The general
relation between X and x is that each of X,
Y, Z is an integral linear combination of x,
y, z and vice versa. The forms f and F are
accordingly equivalent in the sense used in
earlier sections. The forms equivalent to f
make up its equivalence class.

These considerations suffice to translate
problems about lattices into problems
about positive quadratic forms. It can be
seen that, if f is a distance function of a
unimodular lattice Λ with lattice constants
M(Λ) and m(Λ), then M(Λ) = M(f) and
m(Λ) = m(f), where M(f) and m(f) are the

homogeneous and inhomogeneous minima
of f as defined in earlier sections. Therefore
the packing problem for lattices is equiva-
lent to determining those equivalence
classes of unimodular positive quadratic
forms for which the homogeneous
minimum is greatest. The covering
problem translates similarly.

We conclude with a brief indication of
how the 3-dimensional theory is general-
ized to higher dimensions. By definition,
the points P of n-dimensional Euclidean
space, Rn, are the n-tuples x = (x1, …, xn)
of real numbers and distances from the
origin O are given by OP2 = x1

2 + … + xn
2.

Now let a1, … , an be an algebraic basis of
Rn, so that each x = X1a1 + … + Xnan with
unique coefficients X1,…Xn. Then X =
(X1, … , Xn) is the coordinate vector of P
with respect to this basis and OP2 is a
positive quadratic form F(X) in the new
coordinates. Those points P whose coordi-
nates X1,…,Xn are integers form the lattice
with the above basis.

All that has been said about the
3-dimensional case carries over in a
reasonably straightforward way to the
n-dimensional case. In particular, the
counterparts for positive quadratic forms
of the covering and packing problems for
lattices are classical problems of number
theory.

Barnes’s papers on positive quadratic
forms and lattices will now be discussed
under the appropriate subject headings.

Lattice packings of spheres

All but one of Barnes’s nine papers in this
area were written in the period 1955–58
during his time at the University of
Sydney. The ninth, a joint paper with
Sloane, appeared in 1983, the year of
Barnes’s retirement. Although related to
the last of the earlier papers, its back-
ground is in the theory of error-correcting
codes, a subject that came to maturity only
in the intervening decades. Three of the
papers are discussed at some length below.
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The perfect forms in 6 variables. Let f
be a positive quadratic form in n variables
and Λ an associated n-dimensional lattice.
Those f for which the packing density of Λ
is either absolutely or locally maximal are
of particular interest. Thus, f is called
absolutely extreme if Λ provides the
densest possible lattice packing of spheres
in Rn, extreme if no lattice obtained by
slightly deforming Λ provides a denser
lattice packing. The perfect forms referred
to above are a somewhat wider class than
the extreme forms, and their precise defini-
tion need not be given here.

We briefly explain what the above defi-
nitions mean in purely algebraic terms.
With f as above, write γ(f) = MD–1/n, where
M = M(f) and D = D(f) are the homo-
geneous minimum and determinant of f.
Then γ(f) is a function of the coefficients of
f: it achieves its absolute maximum at the
absolutely extreme forms and its local
maxima at the extreme forms.

The absolute maximum just referred to
is Hermite’s constant γn. Its precise value is
known only for n ≤ 8. By the 1950s there
had been extensive research by many
writers on γn and on perfect, extreme and
absolutely extreme forms. The determi-
nation of the perfect forms in three vari-
ables goes back to Gauss in 1831 and in 4, 5
variables to Korkine and Zolotareff24 in
1877. Hofreiter25 in 1933 claimed to have
determined the extreme forms in 6 variables
but his list turned out to be both erroneous
and incomplete. Barnes [(25), (26)] closed
a chapter in this history by determining the
perfect forms in 6 variables.

Twenty years later, Barnes’s results
were confirmed, by a different method and
with the aid of a computer, by Stacey26,
who herself26,27 made considerable pro-
gress in classifying the perfect forms in 7
variables. The latter were completely class-
ified only in 1991. The problem for 8
variables remains unsolved. The numbers
of essentially different perfect forms in 6
and 7 variables are 7 and 31 respectively.

For 8 variables, the number is known to be
at least 10,916 (Martinet,28 p.218).

The method that Barnes uses, due to
Voronoi,29 is essentially geometrical.
Although it applies to n-variable forms in
general, we confine attention here to the
case n = 6. A positive quadratic form in 6
variables has 21 coefficients and is there-
fore representable by a point in 21-dimen-
sional space R21. Each unimodular perfect
form f determines (in a certain way that
will not be explained here) a 21-dimen-
sional cone V(f) in R21. Each such Voronoi
cone is bounded by a finite number of ‘flat’
20-dimensional faces, called its ‘facets’. A
given facet of V(f) is also a facet of exactly
one other Voronoi cone V(f ') and the
finitely many unimodular perfect forms f '
obtained in this way are the neighbours of
f.

We are now in a position to describe
Voronoi’s method of determining the
perfect forms in 6 variables. A list of forms
f1,…,fk is constructed step by step. The first
entry f1 may be any unimodular perfect
form (examples are known). The neigh-
bours of f1 are then determined one by one
and, if not equivalent to a form already
there, entered onto the list. The procedure
is then repeated with the neighbours of f2,
and so on. After a finite number of steps,
no further new forms are produced and the
list is complete.

Voronoi’s method, although straight-
forward in principle, presents considerable
difficulties in practice. Each perfect form
has at least 21 neighbours and in determin-
ing each of them it is necessary to solve
certain systems of linear inequalities in 21
variables. Barnes modified Voronoi’s pro-
cedure in a simple but ingenious way that
takes advantage of the symmetry of the
associated lattice. Even so, determining
the 36 neighbours of the absolutely
extreme form proved very difficult and
Barnes’s treatment of this case is a tour de
force of combinatorial algebra.
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Dense lattice packings in large dimen-
sions. In contrast to (25), the Barnes-Wall
paper (30) is essentially concerned with
forms in a large number of variables. In
what follows, fn stands for a positive quad-
ratic form in n variables and γ(fn), as
earlier, for its ‘scaled homogeneous mini-
mum’ MD–1/n, where M = M(fn) and D =
D(fn).

We recall that the greatest possible
value of γ(fn), assumed when fn is abso-
lutely extreme, is Hermite’s constant γn.
Although its precise value is known only
for small n, there are quite good estimates
of its ultimate size: it lies between n/2πe
and n/πe for sufficiently large n. In this
sense, ‘γn  has order n as n → ∞’.

Let n1, n2, … be a strictly increasing
sequence of positive integers. Consider
now a corresponding infinite sequence of
forms obtained by taking a positive form fn
in n variables for n = n1, n2, …. The above
considerations show that the correspond-
ing numerical values γ(fn) could be of
order n as n → ∞. However, in all such
sequences of forms explicitly constructed
up to 1959, the values γ(fn) turned out to be
bounded, that is, all were less than some
fixed value C. The achievement of (30) was
to construct for the first time a sequence of
forms for which the numbers γ(fn) are
unbounded — in fact, of order n1/2 for
large n.

The values ni chosen in (30) are the
powers 2i. For each such value, a number
of forms are constructed, many of them
extreme. For n = 2i, we now understand fn
to mean the ‘best’ of the forms constructed
in 2i variables. For these forms, the value
of γ(fn) is in fact (n/2)1/2.

The forms fn with n = 2i are of interest
for small, as well as large, i. Thus, f4 and f8

are known to be absolutely extreme, while
f16 is conjectured to be so. The forms f32

and f64 also provide dense lattice pack-
ings, although these have now been
surpassed.

The papers (27), (28) should be men-
tioned here. Various infinite sequences of
extreme forms had long been known.
Barnes used uniform methods to construct
further such sequences. Of particular inter-
est is his method of constructing forms in
n + 1 variables from known forms in n
variables. A comprehensive generalization
of Barnes’s work was made by former
research student Scott.30, 31

Lattice packings constructed from
codes. Over 20 years elapsed between the
paper (30) discussed above and Barnes’s
final paper on sphere packing (45).
Although this was not realized at the time,
the former may be viewed as an applica-
tion of the Reed-Muller codes to packing
theory. The latter, written jointly with
Sloane, is concerned with the systematic
application of coding theory to the con-
struction of lattice packings of spheres.

Coding theory originated in the late
1940s and by the 1960s was widely recog-
nised as an independent subject. Leech32, 33

in 1964 and 1967 made explicit use of
codes to construct dense packings in
dimensions 2n and 24, respectively. Gener-
alizing Leech’s work, Leech and Sloane in
1971 gave general methods for manu-
facturing packings of equal spheres out of
codes. (This paper is reprinted as
Chapter 5 of Conway-Sloane.23) Many of
the resulting packings were non-lattice
(where the centres of the spheres do not
form a lattice) and they included ones
denser than any previously known.

The paper (45) is similar in purpose and
general structure to the Leech-Sloane
paper, except that it is concerned entirely
with lattice packings. There are spectac-
ular applications. For example, starting out
from the famous Leech lattice in R24,
lattices are constructed in Rn for every
multiple n of 24 up to 98,328. Apart from a
few lower-dimensional exceptions, the
corresponding lattice packings are the
densest known in their dimensions.
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Lattice covering by spheres

Of Barnes’s three papers in this area, the
first, which appeared in 1956, was his first
substantial work on positive forms. The
other two, written some time later, were
joint papers with former research students
Dickson (1967) and Trenerry (1972).

The absolutely extreme and extreme
lattices and forms of packing theory have
natural counterparts in covering theory.
Barnes calls them by the same names with
the qualification ‘in the sense of covering
theory’. To avoid confusion here, we call
them optimal and locally optimal,
respectively.

The locally optimal ternary forms.
Barnes’s paper (23) is concerned with lat-
tices in R3 or equivalently with ternary
positive forms. At the time of writing of
the paper, the ternary extreme forms had
long been known but a ternary optimal
form had been discovered for the first time
by Bambah34 in 1954. Barnes sharpens
Bambah’s result by proving that every
locally optimal ternary form is equivalent
to a multiple of Bambah’s form.

Barnes uses a second geometrical
method due to Voronoi.35 Consider a
3-dimensional lattice Λ and a point P of Λ.
Those points of space for which P is the
closest lattice point form a certain region Ω.
By its meaning, the covering radius
r = r(Λ) is the greatest distance of any point
of Ω from P. The region Ω is a polytope and
consequently the points of Ω farthest from
P are among its finitely many vertices.

In the light of these considerations, the
paper proceeds as follows. The geometry is
used first to express r, and thence the
covering density δ = δ(Λ), as functions of
the coefficients of a suitable distance func-
tion f for Λ. Algebra is then used to deter-
mine those values of the coefficients at
which the function δ has a local minimum.
As usual in Barnes’s work, this programme
is carried out with exceptional skill and
elegance.

The locally optimal forms in 4 variables
were subsequently determined by
Dickson36 in 1967 and the optimal forms
in 5 variables by Ryškov and Bar-
anovskiǐ 37 in 1975.

Covering theory is more difficult than
packing theory and less is known about it.
The papers of Barnes and Dickson (33) and
Barnes and Trenerry (35) make significant
contributions to general covering theory.

A basic theorem of Voronoi29 clarifies
the relation between perfect and extreme
forms. An analogous theorem in covering
theory is proved in (33). Essential use of
(33) is made by Dickson in his determi-
nation of the locally optimal forms in 4
variables.

Various infinite sequences of extreme
forms arise naturally and have been known
at least since Korkine and Zolotareff’s
work in the 1870s. The situation for locally
optimal forms is, however, quite different.
An infinite sequence of such forms was
first constructed by Bleicher38 in 1962.
Barnes and Trenerry (35) construct a
second such sequence of surprisingly com-
plicated form.

Lattice quantizers

The one paper on this subject was the joint
paper (46) with Sloane, published in 1983.

The simple process of rounding off
numbers to the nearest integer can be
formulated in lattice terms. The integers 0,
± 1, ± 2, … form the lattice Z1 on the real
line R1. Rounding off a number r in R1 to
the nearest integer means replacing it by
the nearest lattice point. It can be shown
that the average squared error incurred in
this process is 1/12.

Now let Λ be a lattice in Rn. The
associated process of quantization replaces
each point of Rn by the nearest point of Λ.
Let (Λ) denote the resulting average
squared distance error. Making technical
adjustments for dimension and scale, one
arrives at an ‘absolute’ measure G(Λ). The

G̃
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smaller the value of G(Λ), the more effi-
cient Λ is said to be as a quantizer.

The value of G(Λ) for the plane lattice
Z2 (and indeed for Zn in general) is
1/12 = 0.08333…. However, the most
efficient plane lattice is actually the hexag-
onal lattice, for which G(Λ) = 5/(36√3) =
0.08018….

In general terms, the larger the dimen-
sion the more efficient lattices can be. Let
Gn denote the smallest possible value of
G(Λ) for lattices Λ in Rn. Zador39 in 1963
proved the remarkable result that Gn tends
to the value 1/2πe = 0.05855… as n tends
to infinity.

Despite Zador’s result, actually con-
structing highly efficient lattices in Rn

remains a difficult problem. For example,
the q-optimal lattices  in Rn for which G(Λ)
attains the minimum possible value Gn

have been determined only for n = 1, 2, 3.
The case n = 3 is due to Barnes and Sloane
(46). Their work yields the value
G3 = 19/(192.21/3) = 0.07854…, which is
roughly 2% smaller than G2.

In general outline, the proof by Barnes
and Sloane follows Barnes’s proof in (23)
rather closely. Indeed, in the quantization
process associated with a lattice Λ in R3,
the polytope Ω about a lattice point P
consists precisely of the points rounded off
to P. Moreover, the average, (Λ), taken
over R3 is the same as the average taken
over Ω. This is calculated by an ingenious
argument, which involves dissecting Ω
into 60 tetrahedra. Both hand and com-
puter calculations are involved.

Reduction of positive forms

The five papers briefly reviewed here were
published in the period 1975–82.

We are concerned with positive quad-
ratic forms in n variables. Insight into the
totality of such forms may be gained by
picking out one or more representative
forms from each equivalence class.
‘Hermite reduction’ and ‘Minkowski
reduction’ are two methods for doing this.

Reduction theory, which deals with such
methods in general, is one of the most
important (and oldest) branches of the
arithmetical theory of positive forms.

A reduced set of forms is one such that
every form is equivalent to at least one,
and at most finitely many, of its members.
The region in RN [N = n(n + 1)/2] formed
by the coefficient vectors of the members
of such a set is called a reduction domain.
A fundamental domain is a reduction
domain with the stronger property that no
two of its interior points represent equiva-
lent forms.

Minkowski defined certain reduction
and fundamental domains Φ and Φ+, both
of which are convex polyhedral cones.
Barnes and Cohn (37) explicitly deter-
mined their edges (i.e. 1-dimensional
faces) when n ≤ 4 : Φ has 323 edges and
Φ+ 109 when n = 4. Heavy calculations
(partly by computer) are involved.

It is natural to ask whether alternative
methods of reduction might lead to simpler
domains. Again for n = 4, Barnes and
Cohn (38) construct a fundamental domain
with just 12 edges. It is constructed in an
ingenious way from Voronoi cones.

It was proved by Minkowski himself
that there is a constant λn such that the
inequality a11a22 … ann ≤ λn holds for every
unimodular Minkowski-reduced form

f(x1, …, xn) = Σaij xi xj .

Several mathematicians observed that, in
the cases n = 2, 3, this can be sharpened by
replacing the left hand side of the inequal-
ity by a more complicated function of a11,
… ann.. In (42), Barnes extends these
results to the case n = 4, giving a clear
explanation of how such inequalities come
about. The results of Barnes and Cohn (37)
are required in the calculations.

What is involved in refining Minkow-
ski’s inequality for general n was further
clarified by Barnes in (43). Finally, Barnes
and Trenerry (44) showed that no such
refinement exists when n = 5. There is,

G̃
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however, a refinement that holds when a55

is large enough compared with the other
diagonal elements. Heavy algebra is
required in the analysis and several natural
questions are left open.

Concluding Remarks

Eric Barnes was internationally recognised
as a leading contributor to the growth of
knowledge in the geometry of numbers.
The continued relevance of his outstanding
work can be seen from recent publications
in the area, as well as from the two main
general reference works4, 23 and the recent
more specialized book of Martinet.28

Through his research, teaching, scholarly
work and professional service, he made a
major contribution to the development of
research and education in mathematics in
Australia.

Acknowledgments

We thank the Barnes family for their help
with this project and especially for the loan
of an autobiographical note by Eric
Barnes, which was most useful even
though not completed. We are very grate-
ful to the many other people who have
provided information, recollections or
helpful comments. These include Professor
J.W.S. Cassels, Professor J.C. Davies, Mr
D.C.S. Sissons, and the late Professor
I.H. Smith, as well as former students and
mathematical colleagues in Australia.

The photographs have been kindly
made available by the Australian Academy
of Science (portrait) and the University of
Adelaide Archives (Fig. 1).

References

1. E. Seneta. Professor Eric Stephen Barnes
(16.1.24–16.10.00) — some student recollec-
tions. Unpublished typescript, 11 pp., 2001
(placed in E.S. Barnes file, Australian Acad-
emy of Science, Canberra).

2. C.E. Nelson. The reduction of positive defi-
nite quinary quadratic forms. Aequationes
Math. 11, 163–168 (1974).

3. J.W.S. Cassels. An introduction to the geo-
metry of numbers. Springer, Berlin, 1959.

4. P.M. Gruber and C.G. Lekkerkerker. Geo-
metry of numbers. 2nd edition. North Hol-
land, Amsterdam, 1987.

5. S.G. Dani and G.A. Margulis. Values of
quadratic forms at integral points: an elemen-
tary approach. Enseign. Math. (2) 36,
143–174 (1990).

6. R.T. Worley. Asymmetric minima of indefi-
nite ternary quadratic forms. J. Austral. Math.
Soc. 7, 191–238 (1967).

7. R.T. Worley. Minimum determinant of asym-
metric quadratic forms. J. Austral. Math. Soc.
7, 177–190 (1967).

8. R.T. Worley. Non-negative values of quad-
ratic forms. J. Austral. Math. Soc. 12,
224–238 (1971).

9. M. Raka. Inhomogeneous minima of a class
of ternary quadratic forms. J. Austral. Math.
Soc. Ser. A 55, 334–354 (1993).

10. H.J. Godwin. On a conjecture of Barnes and
Swinnerton-Dyer. Proc. Cambridge Philos.
Soc. 59, 519–522 (1963).

11. H.J. Godwin. On the inhomogeneous minima
of certain norm forms. J. London Math. Soc.
30, 114–119 (1955).

12. D. Berend and W. Moran. The inhomo-
geneous minimum of binary quadratic forms.
Math. Proc. Cambridge Philos. Soc. 112,
7–19 (1992).

13. V. Ennola. On the first inhomogeneous mini-
mum of indefinite binary quadratic forms and
Euclid’s algorithm in real quadratic fields.
Ann. Univ. Turku Ser. A I 28 (1958). Separate
monograph, 58 pp.

14. B.N. Delone. An algorithm for the ‘divided
cells’ of a lattice (Russian). Izv. Akad. Nauk
SSSR Ser. Mat. 11, 505–538 (1947).

15. V.K. Grover and M. Raka. On inhomo-
geneous minima of indefinite binary quad-
ratic forms. Acta Math. 167, 287–298 (1991).

16. S. Morimoto.* Über die Grössenordnung des
absoluten Betrages von einer linearen
inhomogenen Form II. Japanese J. Math. 3,
91–106 (1926). *Author also known as
S. Fukasawa.

17. J. Pitman. The inhomogeneous minima of a
sequence of symmetric Markov forms. Acta
Arith. 5, 81–116 (1959).

18. J. Pitman. Davenport’s constant for indefinite
binary quadratic forms. Acta Arith. 6, 37–46
(1960).

19. P.E. Blanksby. On the product of two linear
forms, one homogeneous and one inhomo-
geneous. J. Austral. Math. Soc. 8, 457–511
(1968).



44 Historical Records of Australian Science, Volume 15 Number 1

20. P.E. Blanksby. A restricted inhomogeneous
minimum for forms. J. Austral. Math. Soc. 9,
363–386 (1969).

21. T.W. Cusick, W. Moran, and A.D. Pollington.
Hall’s ray in inhomogeneous Diophantine
approximation. J. Austral. Math. Soc. Ser. A
60, 42–50 (1996).

22. C.G. Pinner. More on inhomogeneous
Diophantine approximation. J. Théor. Nom-
bres Bordeaux 13, 539–557 (2001).

23. J.H. Conway and N.J.A. Sloane. Sphere pack-
ings, lattices and groups. 3rd edition.
Springer, Berlin, 1998.

24. A. Korkine and G. Zolotareff. Sur les formes
quadratiques positives. Math. Ann. 11,
242–292 (1877).

25. N. Hofreiter. Über Extremformen. Monatsh.
Math. Phys. 40, 129–152 (1933).

26. K.C. Stacey. The enumeration of perfect
septenary forms. J. London Math. Soc. (2) 10,
97–104 (1975).

27. K.C. Stacey. The perfect septenary forms
with ∆4 = 2. J. Austral. Math. Soc. Ser. A 22,
144–164 (1976).

28. J. Martinet. Perfect lattices in Euclidean
spaces. Springer, Berlin, 2003.

29. G.F. Voronoi. Sur quelques propriétés des
formes quadratiques positives parfaites.
J. Reine Angew. Math. 133, 97–178 (1908).

30. P.R. Scott. On perfect and extreme forms.
J. Austral. Math. Soc. 4, 56–77 (1964).

31. P.R. Scott. The construction of perfect and
extreme forms. Canad. J. Math. 18, 147–158
(1966).

32. J. Leech. Some sphere packings in higher
space. Canad. J. Math. 16, 657–682 (1964).

33. J. Leech. Notes on sphere packings. Canad. J.
Math. 19, 251–267 (1967).

34. R. P. Bambah. On lattice coverings by
spheres. Proc. Nat. Inst. Sci. India 20, 25–52
(1954).

35. G.F. Voronoi. Recherches sur les paral-
léloèdres primitifs I. J. Reine Angew. Math.
134, 198–287 (1908).

36. T.J. Dickson. The extreme coverings of
4-space by spheres. J. Austral. Math. Soc. 7,
490–496 (1967).

37. S.S. Ryškov and Baranovskiǐ.  Solution of
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