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George Szekeres was a distinguished Hungarian-Australianmathematician, whoworked inmany different areas of mathematics,

and with many collaborators. He was born in Budapest in 1911. His youth between the twoWorld Wars was spent in Hungary, a

country that, as a result of historical events, went through a golden age and produced a great number of exceptional intellects; his

early mathematical explorations were in the company of several of these. However, for family reasons, he trained as a chemist

rather than a mathematician. From 1938 to 1948, he lived in Shanghai, China, another remarkable city, where he experienced the

horrors of persecution and war but nevertheless managed to prove some notable mathematical results. In 1948, he moved to

Australia, as a lecturer, then senior lecturer, and finally reader, at the University of Adelaide, and then in 1964 he took up the

Foundation Chair of PureMathematics at the University of New SouthWales; in Australia he was able to bring his mathematical

talents to fruition. After many years in Sydney, he returned to Adelaide, where he died in 2005. We discuss his early life in

Hungary, his sojourn in Shanghai, and his mature period in Australia. We also discuss some aspects of his mathematical work,

which is extraordinarily broad.
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Biography

George Szekeres (Szekeres Gy+orgy in Hungarian, Fig. 1) was born in

Budapest, on 29May 1911, the second of the three sons of Ármin and

Margit Szekeres (née Zipser). (We will use the English form of

George’s name throughout, although he himself used both forms.

Similarly, for other Hungarians, wewill often use the English version

of their names, but mention the Hungarian form when they first

appear.) The Szekeres family, which was Jewish, owned a business

tanning leather,whichhadmadeboots for the troops in theFirstWorld

War, andwasverywell off as a result.Webeginby sketching a little of

the history of Hungary, to illuminate the world in which he grew up.

Budapest was a thriving city. After the Hungarians rebelled

against the Austrian emperor in 1848, the Habsburg monarchy

responded by changing the name from Austrian Empire to Austro-

Hungarian Empire, naming Budapest as a co-capital of the Empire,

and strengthening the Hungarian economy, so much so that by

WorldWar 1 the population of Budapest had quadrupled, and it had

the largest stock market and the first underground railway system in

continental Europe.Maurice vonKármán led a reform ofHungarian

schools that aimed to incorporate the best elements of the French

and German systems. Jews were emancipated in 1867, and many of

the arrivals in the capital were Jewish; many names were changed to

become Hungarian (the Szekeres family were called Schleininger

before Ármin changed the name). All this led to Budapest becoming

an intellectual hotspot; by way of illustration, the polymath John

von Neumann, the physicists Leo Szilárd and Edward Teller, the

film director Alexander Korda, the photographer Robert Capa, the

musicians George Széll and George Solti, and the writer Arthur

Koestler were all educated there in the late 1800s or early 1900s.

Arguably, the spirit of the age is captured in a quote from Count

Károly: ‘We keep the Gypsies to play music for us, since we are too

lazy to do it for ourselves, and the Jews do the work for us’.1

However, the short-lived 1919 Bela Kun soviet republic and the rise

ofNazism in the 1920s led to increasing anti-Semitism, andmany of

these exceptional people emigrated.2

Figure 1. George Szekeres. Photograph: David Harvey.

1 Hanák (1999) p. 18.
2Much more is available about the historical period and the people who graced it. See, for instance, Hanák (1999). Hargittai (2006). Marton (2006).
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George Szekeres was a retiring youth who was fascinated by the

problems in mathematics and physics that he found in the magazine

Középiskolai Matematikai és Fizikai Lapok for high school stu-

dents. He was particularly inspired by the teaching of his physics

teacher Charles (Károly) Novobátzky, who stimulated George’s

lifelong interest in relativity. Novobátzky evidently knew his

subject verywell, as he later became professor of theoretical physics

at the University of Budapest. When George finished high school,

the Szekeres family needed a chemist in the family business, and so

George followed his parents’ wishes and studied chemical engi-

neering at theM+uegyetem (Budapest University of Technology and

Economics). He took out his degree in 1933; this entailed only one

mathematics course, on calculus.

George’s high school friend Paul (Pál) Turán, who studied

mathematics at university, introduced him to a group of enthusiasts

who met regularly in the City Park in the early 1930s to discuss

mathematics and solve problems. George quickly showed his

ability. One of his contributions was to explain Hermann Weyl’s

Raum, Zeit, Materie to the others. Apart from Turán, the group

included Paul (Pál) Erd+os, who would go on to become the most

prolific mathematician ever, Tibor Gallai (born Grünwald), Geza

Grünwald, and Esther (Eszter) Klein and Marta (Márta) Wachsber-

ger, who were friends from high school. Since there were limits on

the number of university places for Jewish students, Esther was

studying physics while Marta studied mathematics. The group

worked through Aufgaben und Lehrsätze aus der Analysis by Pólya

and Szeg+o, and also solved problems that they posed themselves.

Much has been written about this unusual group of mathematics

aficionados.3

One of the problems that the group considered was posed and

solved by Esther: given five points in a plane, no three of which are

collinear, prove that there are four of them that determine a convex

quadrilateral. George and Paul Erd+os generalised this problem,4

which Erd+os dubbed the Happy Ending Problem, because at this

time it became clear that George and Estherwere perfectlymatched.

They were married on 13 June 1937, but could not afford to live

together, as Esther was in Budapest while George was working in

Simontornya, one hundred kilometres away; rather they spent

weekends together. In due course, they would have two children,

Peter, born in 1940, and Judith (Judy), born in 1954. Following in

his father’s footsteps, Peter later became a mathematical physicist,

with a focus on relativity, while Judy became a musician and

university administrator.

George did not enjoy coming from a wealthy family, and was

curiously relieved when, during his university studies, the family

firm failed; indeed, he became more extroverted. He worked as an

analytical chemist in Hungary from 1933 to 1939. The rise of Hitler

and native Hungarian anti-Semitism made Europe an increasingly

dangerous place for George and Esther, and so they emigrated when

George’s brother Imre, who was already in Shanghai, helped find

him a job there. Again, some background about this remarkable city

may be useful.

Shanghai was an open city, and no visa was required to go there.

It had long been a major port, but the Chinese rejected international

trade for a long period. Beginning with the First OpiumWar in 1840

and continuing with various treaties in the later part of the 1800s, it

became one of the main commercial cities in China, and home to

various European and American ‘concessions’, where a substantial

number of émigrés lived, initially merchants and their families, but

over timemany of these acquired other interests. By 1932, it was the

fifth city in the world by population. Famous ‘Shanghailanders’

includeW.Michael Blumenthal (USATreasury Secretary 1977–9),

the ballerina Dame Margot Fonteyn, and the writer J. G. Ballard.

The Japanese laid siege to Shanghai in 1932, took over most of

the city in 1937, and occupied the foreign concessions in 1941. In

the 1930s, Shanghai was already home to tens of thousands of Jews,

both wealthy Sephardi merchants from the Middle East who had

moved there in the 1800s and Ashkenazi refugees from Russia who

had arrived in the early 1900s; another fifteen thousand refugees

from Europe arrived in the late 1930s. The Jewish population of

Shanghai was about fifty thousand.5

George and Esther left Hungary in late 1938 and arrived in China

in 1939—out of the frying pan and into the fire! Japan had already

invaded Shanghai, and life was very difficult, particularly after

1943, when the Japanese, in response to German pressure, started

actively persecuting Jews. George used to reminisce about swap-

ping his bicycle for a sack of rice, and Peter Szekeres remembers

George picking him up and running to avoid bombing. Imre died

from an infection, and George feared that the whole family would

perish; he was greatly relieved when the war ended very quickly

after the deployment of the atomic bomb. After the war, George

worked as a clerk at an American airbase. Despite these difficulties,

he managed to do mathematics and meet mathematicians in China.

While the Szekeres family was still in Hungary, Esther’s friend

Marta Wachsberger married George Sved (Svéd), another brilliant

mathematician who had become an engineer, who took a job at the

University of Adelaide in the Department of Civil Engineering.

George Sved brought George Szekeres’s name to the attention of

H. W. Sanders, Elder Professor of Mathematics at the University,

who played an important role in offering George a job in Adelaide.

No doubt the task of appointing George was made easier by the

impressive referees from different areas of mathematics who

supported his application, including the geometer S. S. Chern and

the number theorist L. J. Mordell. Graeme Cohen describes

Szekeres’ arrival in Adelaide, and reports Ren Potts’ recollections

of the administrative difficulties associated with George’s lack of

formal mathematical qualifications.6

The Szekeres family (now with Anglicised names) moved to

Adelaide in June 1948; there they shared a flat with the Sved family

for three years.While Adelaidewas very different fromBudapest or

Shanghai, the family soon fell in love with Australia, which George

much later described as very civilized, andwith the Australian bush.

AlhoughGeorge started as lecturer at the University of Adelaide, he

rose rapidly through the ranks to become senior lecturer (1950) and

3 See, for instance, the biographies of Erd+os: Hoffman (1998). Schechter (2000).
4 Erd+os and Szekeres (1935).
5 For much more about Shanghai and its Jewish community, see: Kranzler (1976). Pan (1995).
6 Cohen (2006) pp. 175–176.
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reader (1957), due to his outstanding research. He was elected to

Fellowship of the Australian Academy of Science in 1963; Eugene

Seneta recalls Eric Barnes interrupting one of George’s lectures to

bring the news of his election. At this time, Estherwas tutoring at the

University of Adelaide.

In 1963, George was recruited by John Blatt to UNSW as

Foundation Professor of Pure Mathematics, and arrived in May

1964. Before accepting the post, he requested and received assur-

ances that he would not be expected to carry out any administration;

despite this, he was acting head of school for a brief period shortly

after his arrival. Esther initially found work at the University of

Sydney, and then established a long-term relationship with Mac-

quarie University, where she was later awarded an honorary DSc.

The family bought the house of the recently deceased physicist

Gilbert Bogle (of the Bogle–Chandler mystery),7 in Turramurra,

which was on a large block adjacent to bushland. George wrote to a

friend that they had ‘found paradise’.

George was a member of the Australian Mathematical Society

from its foundation on 15 August 1956. He served as president

from 1972 to 1974 and as vice-president for the years 1971–2 and

1974–5. In recognition of George’s achievements, an issue of the

Journal of the Australian Mathematical Society, edited by John

Giles and Jenny Seberry, was dedicated to him when he retired.8

Much more significantly, in 2001, the Society created a new award,

its most prestigious, and named it the Szekeres Medal. Other

recognition of George’s successful career includes the awarding

of the LyleMedal by theAustralianAcademy of Science in 1968, an

Honorary DSc from the University of New South Wales in 1977,

and the Order of Australia Medal in 2002 for service to Mathemat-

ics. George himself was perhaps proudest of being admitted as one

of the very few foreign members of the Hungarian Academy of

Science in 1986. It is arguable that his part in the creation of one of

the most successful schools of mathematical sciences in Australia is

one of his greatest achievements.

While at high school, George had taken part in mathematics and

physics problem solving and competitions, and he was very active in

promoting similar activities for mathematics students in Australia.

Together with Jim Williams of the University of Sydney, he was

instrumental in setting up a training program in Australia for the

International Mathematical Olympiads (at which Australia has per-

formed very well); George was the Deputy Team Leader for the first

twocompetitions atwhich theAustralian teamcompeted (in 1981and

1982). Together with Esther and Terry Gagen (also of the University

of Sydney), he organised weekly problem-solving sessions at Mercy

College, Chatswood, which have run continuously from 1984; these

sessions have also been offered in other venues. He founded the

magazine Parabola for high school students, which continues to this

day. George and Esther were sources of many problems for Chats-

wood and Parabola, as well as for the University of New South

Wales School Mathematics Competition and the Sydney University

Mathematics Society Undergraduate Mathematics Competition.

George retired in 1976, at 65 years of age, but he continued to

attend UNSW almost every day for the next twenty-five years and

published some twenty papers in his retirement. He continued to

mentor young mathematicians, through the problem-based activi-

ties mentioned above; these young mathematicians include the first

Australian Fields Medal winner, Terence Tao. At the same time, he

continued to be active in music and bush-walking. He climbed

Pigeonhouse Mountain near Nowra in his seventies and walked,

section by section, the whole Great North Walk between Sydney

and Newcastle in his eighties, with first Judy and later John Giles.

George played violin and viola, and he was a member of the Ku-

ring-gai Philharmonic Orchestra, from its foundation in 1971 up to

2000, when he decided that he was no longer dextrous enough to

keep playing with the orchestra. There was a violoncello in the

UNSW School of Mathematics and Statistics that was used by

various visitors to play chamber music with George and his friends.

In 2004, George’s driving license was not renewed, and living in

Turramurra several kilometres from the nearest shops became

impractical, so George and Esther decided to move back to

Adelaide, close to both Peter and Judy. They bought a house there,

but perhaps under the stress of the move, Esther had a stroke, and

moved straight to the Wynwood Nursing Home; George joined her

there after less than a year. On 28August 2005, at 6.15 a.m., George

died, and Esther died before 7.00 a.m. on the same day. Their

remarkable lives and close deaths led to obituaries of both in many

newspapers.9 More mathematical obituaries appeared in the Aus-

tralian Mathematical Society Gazette10 and Mathematikai Lapok

(the journal of the János Bolyai Mathematical Society; this memoir

was later reproduced by the Hungarian Academy of Science).11

Scientific achievements

George Szekeres’ unusual background had some interesting con-

sequences that he described as follows:

Lack of formal mathematical education had some obvious draw-

backs, but also some beneficial effects. I was forced to pick up

practically all mathematical knowledge on my own initiative,

without directed guidance from my elders. Apart from books, my

main source of enlightenment came from the stimulating environ-

ment of several exceptionally gifted young students y. In

exchanges with them, I learned very soon what makes mathematics

tick, probably far better that I could have from formal education. Not

being directed in any particular channel, which is almost unavoid-

able when one works for a Ph.D., I developed a taste for a much

wider spectrum of mathematics than most mathematicians do when

they go through the conventional avenues of education.12

And others shared his views. We quote from the citation for his

Lyle Medal:

Professor G. Szekeres has published, in the period 1964–1968,

thirteen research articles in a wide range of mathematical disci-

plines. Of particular significance are his papers giving the solution

of a long outstanding problem on the fractional iterates of an entire

7 Butt (2012).
8 Journal of the Australian Mathematical Society. Series A, 21 (1976).
9 Cowling (2005b). ‘MATP’ (2005). Morgan (2005a). Morgan (2005b).
10 Cowling (2005a).
11 T.-Sós and Laczkovich (2004/2005).
12Curriculum vitae, George Szekeres files, University of New South Wales Archives.
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function; a new practical method for computer evaluation of high

dimensional integrals that eliminates some of the difficulties of the

standard Monte Carlo methods; the solution of a problem in the

theory of directed graphs which has pointed the way to new work in

this field; and a new system of axioms for relativistic kinematics.

These display a mastery of the concepts and techniques of analysis,

algebra, numerical analysis, combinatorics and mathematical phys-

ics which is seldom found in one individual.

Cohen mentions another indication of George’s mathematical

breadth: in 1968, a review of pure mathematics in Australia found

that George was ‘expert’ in three subfields, more than any other

pure mathematician in the country;13 however, that conclusion did

not take into account his contributions in numerical analysis or

physics!

We now describe the main areas of his work and some of his

most important contributions in more detail, although given the

breadth of his work, it is not possible to include everything, and we

have attempted to choose representative examples of the main

research areas that he examined. It is often said that mathematics

is about patterns, and this is certainly one of the major themes in

George’s work. These patterns are sometimes geometric, some-

times algebraic, sometimes analytic, and sometimes physical. But

George was always interested in the questions of what kinds of

patterns can appear, and how can we classify them.

Graph theory

A substantial part of George’s mathematical work is in the area

known as graph theory. A graph is a mathematical abstraction of a

network: it is made up of points, usually known as vertices, and

edges that join some of the pairs of vertices. Graphs are used in

many areas of application, including chemistry, where the atoms of

a molecule are represented by the vertices of the graph, and the

bonds between them by edges, computer network design, where the

vertices represent computers and the edges physical links between

them, and epidemiology, where the vertices represent people and

the links a physical contact capable of passing on a disease.

Vertices that are linked by an edge are said to be adjacent, while

those not linked by an edge are said to be independent; a clique is a

collection of vertices in which every pair is linked by an edge. In

1928, the English polymath Frank Ramsey (1903–30) proved an

important result,14 now called Ramsey’s Theorem, which may be

stated as follows: ‘there is a smallest number, R(m, n) say, with the

property that every graph with at least R(m, n) vertices either

contains a clique with at least m vertices or a collection of at least

n independent vertices’. For instance,R(3, 3)¼ 6, so in any group of

6 or more persons, there are at least 3 who are mutual friends or 3

who are mutual strangers. The Ramsey numbers R(m, n) are rather

mysterious: it is possible to give upper and lower bounds for them,

but except in a few cases, they are not known. The significance of

Ramsey theory is that it can be rephrased in many ways, all of the

form ‘given a large number of objects, either a certain number of

these have a lot of structure or a certain number have very little

structure’.

George’s best-known paper (or at least his most cited paper) is

joint with Paul Erd+os, about the ‘Happy Ending Problem’.15 As

already mentioned, this concerns an extension of a geometric

problem posed and solved by Esther, which may be stated as

follows: ‘Suppose that you are given five points in the plane. Show

that you can always pick four of these that form the vertices of a

convex quadrilateral.’

The extension of the problem comes when one considers more

than five points and tries to find some points that form the vertices of

a convex pentagon or hexagon or n-gon (which is a polygon with n

sides). Erd+os and Szekeres showed that for any n, if you are givenN

points in the plane, whereN is big enough, then you can always pick

n of these that form the vertices of a convex n-gon. They conjectured

thatN¼ 2n�2þ 1 is enough, but could not prove this. However, they

did manage to construct a set of 2n�2 points, which contains no

convex n-gon,16 adding to the plausibility of their conjecture.

Quite recently, Peters and Szekeres gave a computer proof that

this conjecture is correct when n¼ 6 and N¼ 17;17 this was quite a

tour de force, as the number of configurations to examine is huge.

While this problem appears to be purely geometric, it may also be

formulated in graph theoretic terms.

Erd+os and Szekeres gave two solutions to the Happy Ending

Problem; the first of these used Ramsey’s theorem, and the second

was more geometric. Along the way, they rediscovered and

extended Ramsey’s work and obtained an upper bound for Ramsey

numbers that is still used today:

Rðm; nÞ � mþ n� 2

n� 1

� �

(the right-hand expression is a binomial coefficient). It is perhaps

worth observing that theErd+os–Szekeres bound states only thatR(5, 5)

# 70; it is now known that R(5, 5) lies between 43 and 48, so it seems

that there is still a significant gap between the best theoretical upper

bounds for general Ramsey numbers and their actual values.

In a graph, a path is a sequence of moves, each of which goes

from one vertex to an adjacent one; these can represent the

transmission of data in a network or disease in a population. A

graph is connected if any two distinct vertices are joined by a path. A

tree is a connected graph without circuits; that is, there is no path of

at least three edges whose first and last vertices coincide but all the

other vertices are distinct. A rooted tree is one in which a particular

vertex is chosen and called the root; the height of a rooted tree is the

length of the longest path without back-tracking from the root to

another vertex. These are used to model data structures in computer

science, and their height is an indication of how long it takes to

move around the structure.

The nineteenth-century mathematicians Carl Wilhelm Borch-

ardt and Arthur Cayley showed that there are exactly nn�2 distinct

13 Cohen (2006) p. 267.
14 Ramsey (1929).
15 Erd+os and Szekeres (1935).
16 Erd+os and Szekeres (1961).
17 Szekeres and Peters (2006).
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trees with n vertices.18 Rényi and Szekeres considered the much

harder problem of counting the number of rooted trees with n

vertices of height k.19 They show that this number is given by

X
m1 þ . . .þ mk ¼ n� 1

mi � 0

ðn� 1Þ!
m1! . . .mk !

m
m2

1 . . .mmk

k�1;

and use this expression to show that the average height of a tree with

n vertices is approximately (2pn)1/2.
Ahrens and Szekeres considered symmetric (v, k, l) graphs.20

These are graphs with v vertices in which every vertex is joined

to exactly k others; further, given any two distinct vertices there

are exactly l vertices that are joined to both by edges. Such graphs
are used to produce symmetric block designs, which are useful in

statistics. Before their work, it was known that no (v, k, 1) graphs

exist, given a fixed l greater than 1, there are at most a finite

number of (v, k, l) graphs; when l is a power of a prime number,

there is nomore than one such graph. Ahrens and Szekeres showed

that there is exactly one such graph and constructed it.

Their argument used a cleverly chosen family of curves in the

3-dimensional affine space over the finite field with l elements—

the vertices of the graph are the curves in the affine space, and the

edges of the graph join vertices for which the corresponding curves

intersect.

The celebrated ‘Four Colour Theorem’ states that any map can

be coloured using no more than four colours so that no countries

with a common border have the same colour. This theorem is

intimately connected with graph theory: a map may be turned into a

graph by taking the countries to be the vertices, and linking those

vertices that correspond to countries with a common border (not just

a point). The ‘chromatic number’ of a graph is the smallest number

of colours that are needed to paint all the vertices in such a way that

no adjacent vertices have the same colour.

This theorem, which was proved by a computer examination of

nearly two thousand different configurations in 1976 by Kenneth

Appel and Wolfgang Haken,21 had intrigued mathematicians for

about one hundred and fifty years. It was known since the 1880s that

if the result was false, then it would be possible to produce very

symmetric graphs with several special properties (to be precise,

simple, connected, bridgeless cubic graphs with chromatic index

equal to 4) that could be drawn in the plane without any overlapping

edges. Studying these graphs would help pinpoint the difficulties in

proving the Four Colour Theorem, though their existence would not

preclude the possibility of the theorem holding. The hunt for these

graphs was on, and they became known as snarks (in honour of

Lewis Carroll) because they were elusive. It is not surprising that

one of the first nontrivial snarks was discovered by Szekeres.22

Together with Herbert Wilf, Szekeres also discovered a useful

inequality for the chromatic number of a graph.23

Other areas of discrete mathematics in which Szekeres worked

include block designs and Hadamard matrices. He also drew

pictures of Hadamard matrices that Judy Szekeres turned into

embroidery; one of these still graces the art collection of the

University of Wollongong.

Algebra and group theory

Several of George’s outstanding early papers are in the area known

as group theory. A group is a collection of elements that may be

multiplied and inverted. For example, a block in the shape of a cube

may be rotated around various axes in a total of 24 different ways,

and the collection of these rotations is a group. Performing one

rotation and then another gives the same result as performing a third

rotation, known as the product of the first two; similarly, the inverse

of a rotation is the rotation around the same axis but through the

opposite angle. Groups of symmetries, such as this example, are of

great importance in physics.

George’s second paper is on group theory and applications in

number theory;24 it is notable as Erd+os’ first joint paper. Pure

mathematicians (somewhat jokingly) are assigned Erd+os numbers:

Erd+os himself has number 0; those who collaborated with him have

Erd+os number 1, those who collaborated with the collaborators of

Erd+os have Erd+os number 2, and so on. So George had Erd+os

number 1, and he was the first number 1, of many hundreds.

George studied the problem of trying to classify all metabelian

groups.25 While this paper has not been widely cited, it illustrates

George’s interest in structure. At around the same time, he made

considerable progress on the description of infinite torsion-free

abelian groups,26 extending the work of Ulm.27 He continued to

work in this area, but not everything was published. To quote

George himself:

If I am to choose one particular work that I regards asmy best, I think

that I would opt for a contributiony to the classification problem of

representations of commutative rings which, for peculiar reasons,

never got published. A few years later Professor I. M. Gelfand (with

V. I. Ponomarev) in Moscow found the same results and I still get

every year a New Year greeting card from Gelfand that I cherish

more than if the article had been published.28

He returned to the subject of group theory several times over the

course of his career, and worked on many different types of groups:

finite and infinite, and abelian and nonabelian.

18 Borchardt (1860). Cayley (1889).
19 Rényi and Szekeres (1967).
20 Ahrens and Szekeres (1969).
21 Appel and Haken (1977).
22 Szekeres (1973).
23 Szekeres and Wilf (1967).
24 Erd+os and Szekeres (1934).
25 Szekeres (1948a).
26 Szekeres (1948b).
27 Ulm (1933).
28Curriculum vitae, George Szekeres files, University of New South Wales Archives.
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Partition theory

A partition of a whole number is a way of writing it as a sum of

smaller numbers. For example, the number 5may be partitioned in a

total of seven different ways, namely, 5, 4 þ 1, 3 þ 2, 3 þ 1 þ 1,

2þ 2þ 1, 2þ 1þ 1þ 1, and 1þ 1þ 1þ 1þ 1. Partition theory is

important in various branches of physics. Although this example

makes partitions appear to be simple, it is practically impossible to

write down the partitions of, say, 100, as there are several hundred

million of these.

One of the great advances in the theory was the discovery by

Hardy and Ramanujan of an asymptotic formula (that is, a

formula that becomes relatively more accurate as n becomes

larger) for P(n), the number of partitions of the number n.29 This

was improved by Rademacher, who obtained an exact formula.

Later, Erd+os and Lehner30 investigated P(n, k), the number of

partitions of n into at most k terms, and found an asymptotic

formula for this when k is close to n1/2log(n), the expected number

of summands. Szekeres complemented this by obtaining an

asymptotic formula for P(n, k) (or more precisely a modified

but equivalent version of this) when k is no greater than

2.7 � n1/2;31 in a second paper on the topic32, he improved the

result to find a formula for P(n, k) when k is no greater that C n1/2,

for an arbitrary constant C. He also showed that P(n, k) is

increasing in k when k lies in a certain range. He further

developed the topic with Klaus Roth, and, much later, by himself

and then with many collaborators. It is noteworthy that in the first

paper of this series, George thanks the CSIRO Mathematical

Statistics section for help with a numerical computation.

We now give an application of partition theory. Szekeres and

Guttmann considered triangular spiral self-avoiding random

walks.33 A random walk is the result of repeatedly choosing a

direction ‘at random’ then taking a step in that direction. For

instance, one might throw a die, and if the numbers 1 or 2 appear,

turn right 908, if the numbers 3 or 4 appear, do not change direction,

and if the numbers 5 or 6 appear, turn left 908. One then takes a step,
and repeats the operation. Szekeres and Guttmann consider a

random walk where one avoids all the places that one has already

visited (this is the self-avoiding condition) and does not turn to the

left (this makes the walk spiral); moreover, they allow turns of 608
and 1208 (this condition characterises triangular walks). Self-

avoiding random walks are used to model long chain molecules

(polymers); the vertices represent the atoms of the molecule.

Understanding the behaviour of self-avoiding random walks thus

sheds light on the behaviour of certainmaterials. They show that the

number of triangular self-avoiding n-step randomwalks is given by

C exp(2pOn) log(n/12)/n13/4; the constant C depends on which

angles one may turn through.

Number theory

In George’s estimation, his most significant work in number theory

is in the area of continued fractions.34 By way of example, to find

the continued fraction for the number p that appears whenever we

consider circles we first note that p lies between 3 and 4, so that

p�3 is between 0 and 1; next we consider 1/(p�3), which is

,7.06264, and to observe that this lies between 7 and 8, so that

1/(p�3)�7 also lies between 0 and 1; at step 3, we consider

1/(1/(p�3)�7), which is ,15.96424, subtract 15 from this, and

invert again. This process may be continued indefinitely, and if we

do so, we deduce that we may write:

p ¼ 3þ 1=ð7þ 1=ð15þ . . .ÞÞ:

This kind of expression is known as a continued fraction. If we

forget the ‘tail’ of the fractions, then we find a sequence of rational

numbers, namely 3, then 3þ 1/7, then 3þ 1/(7þ 1/15)¼ 333/106,

and so on. These rational numbers, 3, 22/7, 333/106, 355/113, and

so on, are good approximations to p: the first was used in the Bible
to describe Solomon’s Temple, the second is commonly used in

schools as it is easy to use and is accurate to two decimal places,

while the fourth was known to the Chinese some fifteen hundred

years ago, and is accurate to six decimal places.

Szekeres’ work onmultidimensional continued fractions aims to

find simultaneous rational approximations for several real num-

bers.35 These may then be used to looked for rational relationships

between irrational numbers. Several of his PhD students continued

this study into the 1970s and 1980s.

Mathematical analysis

It is said that the area ofmathematical analysis is characterised by its

willingness to treat infinite sequences and infinite sums, known as

series. George Szekeres was an expert in the art of using infinite

series to extract information. One very early paper in analysis

explores the coefficients of a power series.36 His remarkable pro-

ficiency with infinite series underpinned many of his other papers,

both on analysis and on other topics, such as partition theory.

One of the ongoing themes of George’s research in analysis is

the iteration of functions. For instance, if f (x) ¼ 2x þ 1 and

g(y) ¼ 3y þ 4, then the iterated or composed function ‘g of f ’ or

g 3 f is given by

gðf ðxÞÞ ¼ 3ð2xþ 1Þ þ 4 ¼ 6xþ 7:

More generally, we may define a sequence of functions fs,

where s ¼ 1, 2, 3, ..., by setting f1 ¼ f, f2 ¼ f 3 f1, f3 ¼ f 3 f2,

29 Hardy and Ramanujan (1918).
30 Erd+os and Lehner (1941).
31 Szekeres (1951).
32 Szekeres (1953).
33 Szekeres and Guttmann (1987).
34Curriculum vitae, George Szekeres files, University of New South Wales Archives.
35 Szekeres (1971).
36 Szekeres (1950).
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and so on. In even greater generality, we define a family of iterates

of a function f to be a collection of functions fs, indexed by a real or

complex parameters, such that fsþt¼ fs 3 ft. Iterated functions and
functional equations of Schroeder and Abel type are important in

statistics, where they are used to describe a branching stochastic

process. One of the fundamental questions is whether all functions

may be realised as compositions of other functions, and if not, how

do we recognise when a function is a composed function. For a long

time, iteration of functions had been considered in the context of

complex variables, but in 1949, Kneser showed that the exponential

function, one of the most basic functions of mathematics, is iterated

when considered as a function of a real variable;37 this had been

long known to be impossible when the exponential is considered as

a function of a complex variable.

In an imposing work (certainly one of his best), Szekeres

developed the theory of iteration for functions of a real variable,

and functions defined on sectors of circles in the complex plane.38

The Schroeder functional equation looks for eigenfunctions of the

operator of composition with a given function f, that is, it looks for

eigenfunctions x such that x 3 f ¼ ax, where a is the eigenvalue.

When such a function x may be found, then iterates of f may

often be determined using the formula fs¼ x�1 3 (asx), where the
expression in parentheses is the function x multiplied by the scalar

as; further, x may often be found as a limit limn-N an fn. In this

paper, George makes these ‘often’ statements precise, and puts the

connection between the iterates and the functional equation on solid

ground. Other functional equations appear along the way, in

particular Abel’s equation l 3 f ¼ l�1.

George returned to the study of functional equations and itera-

tion of functions many times during his career, apparently often

stimulated by results of Noel Baker,39 who in turn worked on

extending George’s discoveries. Several of George’s papers on

iteration, including the first, mention work of Baker explicitly, and

one of Szekeres’ very last papers was a contribution to a volume in

Baker’s honour.40

Numerical integration

One part of classical numerical integration is about finding ways to

evaluate (to whatever degree of precision is required) the area under

the graph of a given function. This goes back to Newton, who

observed that the area may be divided into many small ‘near-rec-

tangles’, with possibly curved arcs on top, and that one could find

better estimates for their areas if one considered the curvature of the

arc on top in the most appropriate way. George, especially with his

student Tom Sag, was interested in trying to find volumes under

graphs of functions of several variables, over regions of peculiar

shapes. This rapidly becomes much more difficult than Newton’s

original problem. The strategy that George and Tom adopted was to

find a suitable transformation in the base of the region so that this

becomes circular, where additional symmetries can be employed to

find very good numerical approximations.41 It seems that the

method of Sag and Szekereswas not widely adopted; it was not cited

much before 2000 but has been cited considerably since, so perhaps

this will change.

Mathematical physics

Most of George’s work in (mathematical) physics falls into three

main categories: his work on singularities, his gravitation theory

that involved a cosmic time, and his investigation of a spinor-

connection approach to theoretical physics.

George’s best-known paper in relativity appeared in a volume

dedicated to the geometer Ottó Varga.42 It was perhaps best known

by rumour until its republication in 2002,43 and turns out to be

known for what George himself thought were the wrong reasons.

His purpose, as he himself said, was to ‘expound [his] own

definition of a singularity’, and the application to the Schwarzschild

metric he saw as a mere illustration. That it led to the maximal

analytic extension of the Schwarzschild solution, now known as the

Kruskal–Szekeres metric, was a happy accident. At the time, the

notion of a singularity was very poorly understood, and the wording

of the paper clearly indicates the then-prevalent uncertainty about

what constituted a singularity. Indeed, relativists had yet to fully

appreciate the difference between the coordinate singularity now

called the event horizon (which the Kruskal–Szekeres transforma-

tion regularises) and more serious curvature singularities. Never-

theless, although Martin Kruskal’s paper on the transformation had

the benefit of a wider readership, the ideas involved were part of the

ignition of a serious consideration of singularities in relativity

throughout the 1960s, which led to, for example, the famous

singularity theorems of Hawking and Penrose. Work on singulari-

ties continues to the present day, and are all based on the idea that

singularities are given by the behaviour of geodesics (the paths of

free particles). George’s paper may well be the first time this idea

was seriously considered.

George’s first papers dealing with general relativity were

motivated by a desire to create a theory that included a cosmologi-

cally preferred state of motion, such as might be given by the

universe’s underlying bulk matter. In essence, he accepted what is

often now called the ‘semi-strong’ principle of equivalence (space-

time is locally the spacetime of special relativity), but rejected the

‘very strong’ principle (all reference frames are equivalent).

The first paper of this group introduces this theory,44 postulating

an absolute cosmic time. George derived the field equations of this

theory and worked out some consequences, such as the version in

his theory of the standard cosmological model and the Schwarz-

schild black-hole. In a historically curious consequence, given the

result described two paragraphs ago, the latter solution does not

have a singularity. George also worked out detailed consequences

37 Kneser (1949).
38 Szekeres (1958).
39 Baker (1958).
40 Szekeres (2008).
41 Sag and Szekeres (1964).
42 Szekeres (1960).
43 Szekeres (2002).
44 Szekeres (1955).
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of his models, such as the energy density of the Universe, and the

perihelion precession of satellites. The latter leads to an effect

somewhat smaller than that predicted by general relativity. At the

time of the paper, the known measurement of the precession of

Mercury were consistent with George’s prediction (with suitable

assumptions), but his theory is not consistent with more recent

measurements.

In the second paper, George looked at the effect his cosmologi-

cally mandated absolute motion would have on a test particle.45 In a

series of calculations that even today look heroic, he came to the

conclusion that with the data available in 1955, the absolute velocity

of the solar system must be less than 100 km per second: about half

the sun’s orbital velocity in our galaxy.

In the third paper, George and his collaborator Wallace Kantor

investigated other possible theories, consistent with what they

called a ‘gauge postulate’.46 Much as in the first paper of this

group, they derived field equations and investigated the cosmologi-

cal and spherically symmetric solutions. In this case, the latter

solutions turned out to be identical with those of General Relativity.

George’s next foray in the field of mathematical physics was

quite different in character.47 In it he was concerned with the basic

mathematical structure of spacetime and attempted to base the

geometry on a spinor bundle. This work was later extended by

George and his students.48 Connections on spinor bundles are an

active area of study, but this work seems to remain largely

unnoticed.

Numerical experimentation

As alreadymentioned, George was a pioneer in the use of numerical

work to formulate and test conjectures. His work was often

informed by experiment. K. T. Briggs wrote to J. J. O’Connor and

E. F. Robertson, the authors of the online biography:

I would thus describe George as a pioneer of experimental mathe-

matics—he saw the potential of the computer, particularly in testing

conjectures, very early.49

Examples of this include his work on continued fractions and on

partitions.

George Szekeres the mentor

George and Esther (and other members of their Budapest circle)

were always very interested in problems that could be put to high

school students or university undergraduates. Several of George’s

publications either pose or solve such problems. For example, Paul

Erd+os asked about howmany numbers less that a given number n are

either divisors or multiples of certain other numbers, a1, a2, ..., ak,

and George showed that the problem may be reduced to the special

case where the numbers a1, a2, ..., ak are the first k prime numbers,

that is, 2, 3, 5, 7, and so on.50 Problems of this nature are nowwidely

used to provide mathematical stimulation for very talented high

school students all around the world.

In addition, George spent a lot of time with bright young high

school students in connection with the mathematics competitions

with which he was involved, and engaged with bright young

undergraduates, including David Harvey,51 now an associate pro-

fessor at UNSW Sydney.

The following list of his post-graduate students is arguably not

complete, as he often advised students unofficially: Bill Atterton

(PhD), Noel Baker (MSc), Michael Cullinan (PhD), Phil Diamond

(PhD), Mary Ruth Freislich (MA), John Giles (PhD), Jack Gray

(PhD), Sam Krass (PhD), John Lynch (PhD), John Mack (PhD),

Roman Matlak (PhD), James Michael (PhD), Laurence Misaki

(MSc), Bob Perry (PhD), Lindsay Peters (PhD), Tom Sag (MSc),

Cedric Schubert (MSc), John Schutz (PhD), Geoffrey Smith (PhD),

Peter Trotter (PhD), Alf van der Poorten (PhD), Peter Wark (MSc).

In addition, he supervised many undergraduate projects, and often

provided support and suggestions to his colleagues at the Universi-

ties of Adelaide and New South Wales and elsewhere. The first-

named author of this article has certainly profited from his advice.
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