Science By Doing units and Visual Art links

Year level	Chemical science unit name	Possible art activity (unit activity number)	Visual Arts content description
7	Enough water fit for drinking	 Create an art piece that represents 1. Water molecules behavior at different temperatures (2.2) 2. Attractive and repulsive electrostatic forces (2.4) 3. Cohesive forces in water (2.4) 4. Adhesive properties of water (2.6) 5. Chromatography (2.8) 6. A cross section view of a tree and capillary action (2.8) 7. Diffusion of liquid or gases (3.1) 8. Dissolving at the molecular level (3.4) 9. Time lapse of crystal formation (3.5) 10. A digital representation of the water cycle (4.1) 11. Water treatment (4.3) 12. Filtration (before and after) (5.4) 	ACAVAM118 ACAVAM119 ACAVAM121
8	Rock, Paper, Scissors	 Create an art piece that represents 1. A collage of the properties of metals (1.3) 2. Brownian motion under a microscope (2.2) 3. The use of fire through the ages (2.5) 4. Plasma and Bose–Einstein condensate (2.6) 5. The microscopic view of electrolysis of water (3.5) 6. Elements, compound and mixtures collage (3.8) 7. Melting point and freezing point (4.2) 8. Sublimation (4.3) 9. Chemical reactions such as photosynthesis or corrosion (5.4) 10. Polymers under a microscope (5.5) 11. Hazardous chemicals and safety (5.9) 	ACAVAM118 ACAVAM119 ACAVAM121

Science By Doing units and Visual Art links

Year level	Chemical science unit name	Possible art activity (unit activity number)	Visual Arts content description
9	Chemical Reactions	 Create an art piece that represents 1. Timeline of atomic theory (1.2) 2. Electron configurations (1.3) 3. Isotope differentiation (1.4) 4. Electron configuration to teach others (2.3) 5. Sharing of electrons in molecules (2.5) 6. Exothermic and endothermic reactions (3.1) 7. Haber process (3.5) 8. Acid and bases (4.1) 9. The pH jigsaw of various household products (4.3) 10. Acid and metal reactions (4.5) 11. Radiation (5.1) 12. Nuclear fission and nuclear fusion (5.5) 	ACAVAM126 ACAVAM127 ACAVAM128
10	Chemical Patterns	 Create an art piece that represents 1. A collage of the noble gases(1.5) 2. The reactivity of common metals (2.2) 3. The use of titanium or another made made element(2.5) 4. Corrosion (2.6) 5. Catalysts (3.3) 6. Sulphuric acid and its uses (3.5) 7. Possible future innovations of materials of the future (4.1) 8. Hydrocarbons (4.3) 9. Pollution and uncombusted fuels (4.5) 10. Polymerisation (5.2) 11. Recycling of plastics (5.3) 12. Recycling plants and how they work (5.6) 	ACAVAM126 ACAVAM127 ACAVAM128