# **Ten-Year Strategic Plan for Space Science**

# Report of the Space Health and Life Sciences Working Group

CHAIR: Assoc Prof Gordon Cable AM

**MEMBERS**:

Assoc Prof Jeff Ayton Prof Siobhan Banks Dr Jason Dowling Prof Julie Hides Prof Steven Moore Mr Karl Rodrigues Assoc Prof Ewen McPhee Dr Rob Grenfell Dr Gillian Hirth Prof Michael Davis AO

Disclosures of interest:

| Member                     | Disclosure of interest                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assoc Prof Gordon Cable AM | Clinical Associate Professor, School of Medicine, University of<br>Adelaide<br>Member, Space Life Sciences Committee, Australasian Society of<br>Aerospace Medicine<br>Senior Lecturer Aerospace Medicine, University of Tasmania<br>Director of Medical Operations, Human Aerospace Pty Ltd.<br>Head of Training, RAAF Institute of Aviation Medicine, Dept of<br>Defence |
| Assoc Prof Jeff Ayton      | Chief Medical Officer, Australian Antarctic Division, Department of<br>Agriculture, Water and the Environment, Australian Government.<br>Director Centre for Antarctic, Remote and Maritime Medicine<br>(CARMM)<br>Adjunct Associate Professor University of Tasmania- College of<br>Health and Medicine<br>Adjunct Associate Professor James Cook University -School of   |

|                          | Public Health and Tropical Medicine<br>Chair, Rural and Remote Digital Innovation Group Australian<br>College of Rural and Remote Medicine                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assoc Prof Jason Dowling | Principal Research Scientist and Team Leader, CSIRO Health and<br>Biosecurity<br>Adjunct Associate Professor, Faculty of Medicine (UNSW)<br>Adjunct Associate Professor, School of Information Technology<br>and Electrical Engineering (University of Queensland)<br>Honorary Principal Fellow, Centre for Medical Radiation Physics<br>(Wollongong University)<br>Affiliate, Institute of Medical Physics (University of Sydney)<br>Conjoint Lecturer (Mathematical and Physical Sciences) (University<br>of Newcastle) |
| Prof Siobhan Banks       | Research Professor and Co-Director, Behaviour-Brain-Body<br>Research Centre, Justice and Society, University of South Australia<br>Adjunct Assistant Professor of Sleep in Psychiatry, University of<br>Pennsylvania School of Medicine, USA                                                                                                                                                                                                                                                                              |
| Prof Julie Hides         | Deputy Head of School, Griffith University.<br>Clinical Director, Mater Health Services Back Research Clinic.<br>Adjunct Professor, Menzies Institute for Medical Research,<br>University of Tasmania.                                                                                                                                                                                                                                                                                                                    |
| Prof Michael Davis AO    | Adjunct Professor, University of South Australia<br>Trustee and Faculty Member, International Space University<br>Director, Smartsat CRC Limited                                                                                                                                                                                                                                                                                                                                                                          |
| Dr Gillian Hirth         | Chief Radiation Health Scientist and Deputy Chief Executive<br>Officer, Australian Radiation Protection & Nuclear Safety Agency<br>(ARPANSA)<br>Chair, United Nations Scientific Committee on the Effects of<br>Atomic Radiation (UNSCEAR)<br>Member, Committee 4 of the International Commission on<br>Radiological Protection (ICRP)                                                                                                                                                                                    |

# **VISION STATEMENT**

It is the year 2030. The last decade has seen a spectacular reinvigoration of human space exploration by Government space agencies, the likes of which has not been seen since the Apollo era of the 1960s. A sustainable human presence has been established in lunar orbit on the Gateway, an international collaboration which has now been operational and expanding progressively since the mid-2020s. Although not crewed continually, it provides a natural waypoint for missions to the lunar surface and a research platform that has served its purpose well as a proving ground for technologies that will see missions succeed even further into the solar system. Australian expertise in remote medical care and telemedicine has provide the technology for the modular medical bay aboard the Gateway which stands ready to provide care in the event of any emergency, a proud and uniquely Australian contribution to space exploration. Since the Artemis 3 mission 6 years ago, when the first woman set foot on the moon in 2024, yearly lunar missions have become almost routine allowing the establishment of a permanent beachhead at the lunar south pole from which surface exploration of the Moon has been answering many questions about the origins of the inner solar system. A collaboration of Australian Universities and Industry have flown many life sciences experiments, not only to Gateway but down to the lunar surface under the umbrella of the Australian Virtual Institute for Space Health and Life Sciences. Now at the beginning of a new decade preparations are in place for the departure of the greatest and most momentous exploration mission in human history - to Mars. For Australia it is momentous too. Our world leading medical training programs, in particular in remote and extreme environment medicine, have been combined with space medicine training and moulded into the training pathway of choice for international physician astronauts destined for deep space missions. Graduates have already set foot on the lunar surface, but now Australia is proudly providing our very own crew medical officer on the first human mission to Mars. Artemis 8 will transport the crew to the Gateway to board their transit vehicle in preparation for departure, and then for the duration of the three year mission, Australian flight surgeons and biomedical engineers in Adelaide Mission Control will work side by side with colleagues in other centres around the globe and international agencies to provide 24 hour networked medical monitoring and care for the intrepid crew.

Alongside supporting the Moon mission, Australian Space Life Sciences and Health capability has also accelerated the emerging Space Tourism market. Facilities and centres established to support the growing Asian demand for Space Tourism have created new business opportunities, international collaboration and significant medical solutions in pre-flight, in-flight and post-flight monitoring and treatment with immediate commercial opportunities in the health sector.

In 2030, the success of Australia in the field of space health and life sciences has been achieved only through the decade-old plan to establish Australia as a global leader in space life sciences by stimulating research, establishing infrastructure, fostering local and international collaboration and generating spin-off products and services. The vision to provide a uniquely Australian niche biomedical capability to international human space exploration programs has been achieved. Those innovations and technologies have served to improve public health throughout the 2020s, and have generated considerable economic benefits for Australia, not only in the commercialisation of research developments, but also through reducing the economic burden of disease by improving health outcomes, particularly in elderly, underserved, remote and indigenous populations. Interest in STEAM subjects has never been higher in Australia and that has been largely thanks to the ability of space research and human space exploration by Aussies to inspire and engage Australia's healthcare and scientific workforce, and young people at all stages of their education.

### **BACKGROUND ON TOPIC AREA**

The human and biomedical sciences can and should be a key element of the future Australian Space Industry. There are three domains in which biomedical science is an important contributor. First, it is an enabler of human space flight, supporting commercial space tourism and future exploration missions. Australia's Government has committed funds to stimulate our industry to assist NASA and other international agencies with the Artemis and Moon to Mars Program, the missions that will return humans sustainably to the Moon in 2024, as a prelude to exploring Mars. Second, the scientific spin-off benefits that arise from human spaceflight programs will provide substantial economic and public health benefits to Australia through improved health care, the development of novel technologies by private industry, and stimulation of the academic and research sector. The emerging Space Tourism market may stimulate awareness of the health of humans in space, contributing to a demand for similar health monitoring and treatment technologies on Earth - initially customised to a high-net-worth clientele but with great ability to expand into a global mass market. Third, space is a unique microgravity laboratory that, independent of exploration programs, can be used to develop novel biomedical technologies which can be commercialised purely for the benefit of human health.

The advent of an Australian Space Agency has provided a much-needed organised framework and point of liaison to allow greater contribution by Australia to international research efforts. Australian researchers and clinicians have already been working in this field for some time (both at home and as expats working overseas for Space Agencies) and collaborating internationally, but independently, often unaware of programs being undertaken in other institutions elsewhere in Australia. Work has been undertaken by professional bodies and colleagues in the areas of space medicine education and in world leading provision of rural and remote medical care. Government organisations such as the Australian Antarctic Division have a strong track record of polar and extreme environment medicine research and collaboration with NASA in space analogue work. Multiple academic and clinical institutions around the country are involved in a wide range of space related disciplines, including fatigue and circadian physiology, somatosensory physiology, microgravity countermeasures, radiation microdosimetry and shielding, musculoskeletal effects of space flight, neurophysiology, nanotechnology, environmental monitoring, cellular biology, psychology/psychophysiology, and bioethics. Private industry is already collaborating with international space agencies, for example in the novel use of virtual reality for space applications, data analytics, wearable biomonitoring, and antimicrobial nanotechnologies. These existing areas of expertise position Australia well to expand its contribution to future human space flight programs through space medicine education, medical support for long-term exploratory missions, and developing countermeasures for the physiological challenges of space flight.

Key science questions come from existing human spaceflight programs and have been well defined. For example, NASA's Human Research Roadmap Integrated Path to Risk Reduction (HRR iPRR) is a top-level summary of some 230 knowledge gaps yet to be closed, which identifies 28 overarching risks with the long-term view of Mars exploration in mind. Table 1 lists the high-level and mid-level risks identified, and risks for which there is insufficient data to allow stratification.

| RISK LEVEL (Likelihood vs Consequence)                                                                                                          |                                       |                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|--|--|--|--|--|
| High Level Risk     Mid-Level Risk     Insufficient Risk Data                                                                                   |                                       |                                 |  |  |  |  |  |
| Space radiation exposure and its<br>relationship to cancer and<br>degenerative diseases of the<br>cardiovascular and central nervous<br>systems | Injury from dynamic loads             | Intervertebral disc problems    |  |  |  |  |  |
| Cognitive and behavioural effects of spaceflight                                                                                                | Injury from EVA operations            | Celestial dust exposure         |  |  |  |  |  |
| Inadequate food and nutrition                                                                                                                   | Hypobaric hypoxia                     | Effects of medications in space |  |  |  |  |  |
| Team performance decrements                                                                                                                     | Decompression sickness                |                                 |  |  |  |  |  |
| Spaceflight Associated Neuro-<br>Ocular Syndrome (SANS)                                                                                         | Altered immune responses              |                                 |  |  |  |  |  |
| Renal stone formation                                                                                                                           | Host-microorganism interaction        |                                 |  |  |  |  |  |
| Human system interaction design                                                                                                                 | Sensorimotor alterations              |                                 |  |  |  |  |  |
| Long term storage and stability of medications                                                                                                  | Reduced muscle mass and strength      |                                 |  |  |  |  |  |
| Inflight medical conditions                                                                                                                     | Reduced aerobic capacity              |                                 |  |  |  |  |  |
|                                                                                                                                                 | Sleep loss and circadian misalignment |                                 |  |  |  |  |  |
|                                                                                                                                                 | Orthostatic intolerance               |                                 |  |  |  |  |  |
|                                                                                                                                                 | Bone fractures                        |                                 |  |  |  |  |  |
|                                                                                                                                                 | Cardiac rhythm problems               |                                 |  |  |  |  |  |

#### Table 1. Risks Identified by NASA's Human Research Roadmap.

Previous reports<sup>1</sup>, and indeed the research conducted for this strategic plan, indicate that Australia is already working to answer questions in many of these key areas. Capabilities will need to be developed or enhanced so that this work can continue and flourish. Importantly, deliberate and organised networking to increase connections domestically between researchers, and between researchers and industry will be key to this, as well as the establishment of international agency collaborations for training people and fostering research. Domestic capabilities may include things such as parabolic flight programs, head-down bed rest laboratories, short and long arm centrifuges, radiation laboratories, microgravity simulators, and hypobaric facilities. Establishment of a desert-based space analogue research program has the potential to supplement existing Antarctic analogue research to enhance understanding of psycho-social and human factors aspects of the risks identified.

The potential benefits to the Australian community and economy from a well-established space life science capability within the Australian Space Industry are enormous in revenue terms. The economic benefits come not only from commercialization of innovative technologies but from the

<sup>&</sup>lt;sup>1</sup> Cable G, Ayton J et al. Space Life Sciences: Australia's Future Space Industry Capability. Submission to the Australian Space Agency Expert Working Group, Nov 2017.

application of those technologies to improve population health outcomes. The areas of greatest benefit for Earth-based medicine in the short term are likely to come from bone density research for osteoporosis<sup>2</sup>, exercise development and reconditioning for people with musculoskeletal conditions<sup>8</sup>, sleep and circadian physiology research<sup>3</sup>, neuro-vestibular research for falls prevention<sup>4</sup>, miniaturization of medical diagnostics, sensors and technologies<sup>5</sup>, telehealth and remote medicine training and support, psychological care for isolated populations<sup>6</sup>, antimicrobials to combat increasing antibiotic resistance<sup>7</sup>, space-hardened pharmaceuticals and increased efficiencies in agriculture.

## Aim

The aim of this report is to provide a snapshot of Australia's current capabilities and resources in space life sciences and identify new opportunities and potential innovations for the coming decade mapped against priorities and key questions that international space agencies must address to achieve success in the human exploration of space.

## Methodology

Wide-ranging engagement with stakeholders from the space life sciences sector was sought by all members of the Space Health and Life Sciences Working Group. Using existing professional networks and snowball sampling techniques, respondents were invited by email to complete an online questionnaire. Face to face engagement was also employed during the Australian Space Research Conference in 2019 to provide information about the decadal planning process and invite participation in the survey. The survey requested demographic information regarding respondent's current professional positions. Previous, current and future planned work that may be relevant to space life sciences was explored together with any international space agency collaborations. Respondents were asked to identify Australia's niche capabilities in the field, and what might lead to the greatest benefits for human health generally ('impacts'). Their opinions were sought on key issues/challenges/gaps ('insight'), what should be achieved in the next decade to address these ('aspiration'), actions required to obtain these achievements, and what metrics could be used to measure success. Finally, respondents were asked to indicate from a list of key knowledge gaps identified by NASA's HRR, where they felt their work might contribute to closing those gaps, checking as many as required.

<sup>&</sup>lt;sup>2</sup> On current estimates by 2022, 6.2 million Australians over the age of 50 will suffer osteoporosis or osteopenia costing \$3.84 billion. (Watts J, et al. Osteoporosis costing all Australians: A new burden of disease analysis – 2012 to 2022. Osteoporosis Australia, Deakin University, University of Melbourne, 2012)

<sup>&</sup>lt;sup>3</sup> The total cost of inadequate sleep in Australia was estimated to be \$66.3 billion in 2016-17. (Asleep on the Job: Costs of Inadequate Sleep in Australia. Sleep Health Foundation and Deloitte Access Economics Report, August 2017)

 <sup>&</sup>lt;sup>4</sup> In 2014-15, 1.4 million patient-days of hospital treatment were attributed to injurious falls. (Pointer S 2018. Trends in hospitalised injury due to falls in older people, 2002–03 to 2014–15. Injury research and statistics series no. 111. Cat. no. INJCAT 191. Canberra: AIHW)
<sup>5</sup> For example: Moore ST, MacDougall HG, Ondo WG. Ambulatory monitoring of freezing of gait in Parkinson's disease. J Neurosci Methods. 2008 Jan 30;167(2):340-8.

<sup>&</sup>lt;sup>6</sup> The total disease burden rate in "remote and very remote" areas of Australia was 1.4 times as high as that for major cities in 2015. (Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Australian Burden of Disease series no. 19. Cat. no. BOD 22. Canberra: AIHW)

<sup>&</sup>lt;sup>7</sup> Antimicrobial resistance driven by the overuse and misuse of antibiotics shows little sign of abating in Australia and poses an ongoing risk to patient safety, with common pathogens becoming increasingly resistant to major drug classes. (Australian Commission on Safety and Quality in Health Care (ACSQHC). AURA 2019: third Australian report on antimicrobial use and resistance in human health. Sydney: ACSQHC; 2019)

Demographic information was summarised, and qualitative responses were assessed using thematic analysis and then tabulated using Microsoft Excel software.

### Results

N=50 respondents completed the online survey. Two respondents were excluded from the analysis – one who responded twice to the same survey, and the other who did not provide serious responses to the questions. This left a final sample of N=48 on which the analysis was conducted.

Respondents came from a broad range of scientific disciplines summarized in Table 2, with 51% working in academia, 17% in clinical roles, 12% in each of Government and professional organisations, and 8% from industry.

| Clinical Medicine      | Sciences                           | Allied Health            | Engineering    |  |
|------------------------|------------------------------------|--------------------------|----------------|--|
| Aerospace medicine     | Astrophysics                       | Psychology               | Aerospace      |  |
| Space medicine         | Zoology                            | Physiotherapy            | Engineering    |  |
| Hyperbaric medicine    | Flow chemistry                     | Nutrition                | Habitat design |  |
| Family medicine        | Space biology                      | Telehealth<br>technology | Biotechnology  |  |
| Emergency medicine     | Microbiology                       | Health education         |                |  |
| Rural /remote medicine | Physiology - exercise              | Human factors            |                |  |
| Public Health          | Physiology - vascular Biomechanics |                          |                |  |
| Anaesthesia            | Medical physics Biosecurity        |                          |                |  |
| Psychiatry             | Archaeology                        |                          |                |  |
| Immunology             | Physics                            |                          |                |  |
| Health and medicine    | Physiology - comparative           |                          |                |  |
| Radiation oncology     | Biochemistry                       |                          |                |  |
| Bioastronautics        | Neuroscience                       |                          |                |  |
|                        | Nuclear and radiation science      |                          |                |  |
|                        | Computer science                   |                          |                |  |
|                        | Mathematics                        |                          |                |  |
|                        | Chemistry                          |                          |                |  |

Table 2. Disciplines represented among respondents.

Work currently being undertaken by respondents relevant to space health, life sciences and human spaceflight was most commonly reported as gravitational physiology, electromagnetic and space radiation, biomedical devices and monitoring, and virtual/augmented reality devices. The range of current work is summarized in Figure 1. Seventy-seven percent of respondents reported current or previous collaborations with international space agencies, most commonly NASA (30%), ESA (21%) and DLR (12%). Only 23% of respondents reported previously commercializing SHLS research developments that could benefit the health of human populations, however 56% planned to do that in the future.



Current Work Relevant to Space Health



The responses to 5 key questions listed below, posed by the Australian Academy of Science, are summarized in Table 3. Summary of key issues/challenges/gaps ('insight'), what should be achieved in the next decade to address these ('aspiration'), actions required to obtain these achievements, impacts, and measures of success.

- Can you provide **insights** into the current main issues, challenges and knowledge gaps in space medicine and life sciences?
- What capabilities and achievements should Australia **aspire** to develop in space health and life sciences over the next 10 years?
- What are the actions required to obtain these capabilities and achievements?
- In what area do you think developments in space life sciences and health could have beneficial **impact** on the health of the Australian population?
- What **metrics** could we use to quantify the success of space health and life sciences programs?

| Table 3. Summary of key issues/challenges/gaps ('insight'), what should be achieved in the next decade to  | )     |
|------------------------------------------------------------------------------------------------------------|-------|
| address these ('aspiration'), actions required to obtain these achievements, impacts, and measures of succ | cess. |

| Insight               | Aspiration                | Actions                  | Impacts                 | Metrics               |
|-----------------------|---------------------------|--------------------------|-------------------------|-----------------------|
| Radiation beyond the  | Increased research        | Australian radiation     | Understanding           | Academic outputs      |
| Earth's magnetosphere | capacity into the effects | research laboratories    | radiation effects on    |                       |
|                       | of space radiation, with  | conducting               | cardiovascular and      | Technologies and      |
|                       | facilities and            | radiobiological research | neurodegenerative       | techniques translated |
|                       | infrastructure to         | for space application.   | diseases                | to healthcare         |
|                       | support research into     | Foster collaboration     |                         |                       |
|                       | biological effects,       | between researchers      | Improved nuclear        | Research grants       |
|                       | monitoring and            | and disciplines.         | medicine techniques     | approved              |
|                       | countermeasures.          |                          |                         |                       |
|                       | Provides monitoring       |                          | Protection of radiation | Experiments flown to  |
|                       | and countermeasures       |                          | workers and protection  | space.                |
|                       | to future missions.       |                          | of astronauts.          |                       |

| Insight                  | Aspiration               | Actions                  | Impacts                   | Motrics                                 |
|--------------------------|--------------------------|--------------------------|---------------------------|-----------------------------------------|
| Problems of altered      | Microgravity &           | Collaboration with       | Microgravity mimics the   | Number of experiments                   |
| gravity                  | hypergravity research    | international            | nrocess of ageing         | flown                                   |
| gravity                  | and development of       | researchers              | process of ageing.        | nown.                                   |
|                          | countermeasures          | researchers.             | Deeper understanding      | Reduced costs to the                    |
|                          |                          | Establish dedicated      | of diseases of the        | national economy                        |
|                          |                          | research facilities.     | musculoskeletal           | , , , , , , , , , , , , , , , , , , , , |
|                          |                          | programs and             | system, cardiovascular    |                                         |
|                          |                          | infrastructure to        | system, and neuro-        |                                         |
|                          |                          | address these            | vestibular system in      |                                         |
|                          |                          | important priorities.    | space will aid in the     |                                         |
|                          |                          |                          | treatment of patients     |                                         |
|                          |                          | Private industry to be   | on Earth.                 |                                         |
|                          |                          | encouraged to establish  |                           |                                         |
|                          |                          | infrastructure in        |                           |                                         |
|                          |                          | collaboration with       |                           |                                         |
|                          |                          | Government and           |                           |                                         |
|                          |                          | universities             |                           |                                         |
| On-board medical         | Operational capabilities | Development of new       | Better management         | Improved burden of                      |
| systems and              | derived from expertise   | medical devices,         | and improved              | disease statistics in                   |
| telemedicine for Earth-  | in remote and extreme    | biomonitoring,           | healthcare of isolated    | rural and remote areas                  |
| independent              | environment medicine     | robotics, Al, big data   | and remote                |                                         |
| operations.              | and telehealth used to   | management,              | communities, and          | Reduced patient                         |
|                          | support Moon to Mars     | communications, and      | better healthcare         | transfers to tertiary                   |
|                          | missions.                | telenealth strategies.   | delivery systems          | referral centres,                       |
|                          |                          | Winiaturization of       | through the application   | transportation costs,                   |
|                          |                          | diagnostics.             | or space technology,      | patient-days in city                    |
|                          |                          |                          | saving time, transfer to  | nospitais.                              |
|                          |                          |                          | support for isolated      | Australian technology                   |
|                          |                          |                          | nractitioners             | chosen to fly                           |
|                          |                          |                          | proceedings.              | operationally to space                  |
|                          |                          |                          |                           | operationally to space.                 |
|                          |                          |                          |                           | Positive astronaut                      |
|                          |                          |                          |                           | health outcomes.                        |
| Collaboration between    | Developing               | Establish an Australian  | A streamlined approach    | International                           |
| disciplines and the      | partnerships and         | centre of excellence in  | to facilitate access to   | investment and                          |
| translation of research  | opportunities, and       | the form of a Virtual    | international and         | numbers of                              |
| into useful applications | integration with global  | Institute to provide a   | domestic collaborators    | collaborations                          |
|                          | experts, through an      | focal point and          | and funding sources       |                                         |
|                          | Australian Virtual       | leadership for           | specifically for the life | Successfully                            |
|                          | Institute for Space Life | interdisciplinary        | sciences                  | commercialized outputs                  |
|                          | Sciences as a national   | collaboration among      |                           |                                         |
|                          | centre of excellence.    | Australian institutions  |                           |                                         |
| The physiology and       | Space analogue           | Link a consortium of     | Improved mental           | Number of experiments                   |
| psychology of isolation  | research capabilities    | Australian universities, | health outcomes for       | flown.                                  |
| and confinement,         | and simulated            | Mars Society of          | isolated populations.     |                                         |
| including circadian      | environments –           | Australia and            |                           | Reduced costs to the                    |
| disruption and immune    | underwater, desert.      | Government agencies      | Novel treatments for      | national economy,                       |
| dysregulation            |                          | with international       | autoimmune diseases,      | disease prevalence,                     |
|                          |                          | analogue programs to     | intectious diseases,      | disease burden and                      |

### Report of the Space Health and Life Sciences Working Group

| Providing deeper<br>understanding of<br>immunology,<br>microbiology and the<br>microbiome, and<br>behaviours/psychologic<br>al impact of<br>isolated/confined<br>environments. | establish an enduring<br>desert analogue<br>research facility.<br>Collaboration with<br>NASA on NEEMO<br>program.<br>Promote expertise at<br>AAD as world-leading in<br>the field, increased<br>outreach to<br>international agencies<br>for collaborative<br>research in Antarctica. | sleep disorders, and<br>circadian dysrhythmia.<br>Improved performance<br>of teams in the<br>workplace, improved<br>productivity and<br>decreased healthcare<br>costs. | numbers of patient-<br>days in hospital over<br>the next 10 years<br>compared to current<br>estimates. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|

| Insight                 | Aspiration              | Actions                  | Impacts                  | Metrics                   |
|-------------------------|-------------------------|--------------------------|--------------------------|---------------------------|
| Funding for research    | Clear mandate for       | Ongoing Aust Space       | An increase of           | Academic outputs          |
| and development         | research                | Agency support for       | Australian based         |                           |
|                         |                         | research and industry,   | research and             | Dollar amount of          |
|                         |                         | dedicated research       | translation              | funding and grants        |
|                         |                         | funding streams/grants   |                          | secured for research      |
|                         |                         | allocated for space life |                          | Number of jobs created    |
|                         |                         | medicine star-uns        |                          | in the sector             |
|                         |                         | medicine star-ups        |                          | in the sector.            |
|                         |                         |                          |                          | Numbers of researchers    |
|                         |                         |                          |                          | in relevant fields.       |
| Suborbital flights for  | Australia is likely to  | Collaboration with       | Increased public         | Growth in commercial      |
| commercial tourism      | become a popular        | international agencies   | interest in health       | space flight sector,      |
| operations will become  | destination for         | and commercial           | technologies derived     | flight safety, incident   |
| commonplace, yet        | suborbital launches due | companies, Australian    | for high profile space   | and accident statistics,  |
| there is limited        | to favourable           | Space Agency support     | operations.              | and adverse in-flight     |
| experience with the     | geography and           | and facilitation,        | Appropriato regulatory   | iniurios                  |
| these flights on        | geopolitical stability. | micro- and hypergravity  | approach and             | injuries.                 |
| humans.                 |                         | research, funding of     | health/safety standards  | Commercialised            |
|                         |                         | dedicated research       | for commercial space     | products spun off to the  |
|                         |                         | programs.                | passengers in Australia. | broader aerospace and     |
|                         |                         |                          |                          | health industry.          |
|                         |                         |                          | Contribution to safety   |                           |
|                         |                         |                          | of operations            |                           |
| 1.10                    |                         | No. I control Poly of    | internationally.         |                           |
| and babitats to support | IVA/EVA SUIt            | newly established        | environmental            | successful validation in  |
| long duration missions  | leveraging off existing | hypoharic/hyperharic     | improving life on Farth  | natents awarded and       |
| including hypobaric     | work.                   | facility supported to    | in particular for        | publications              |
| environments, space     |                         | establish research       | rural/remote             |                           |
| suit design, and        | Using ag-tech and food  | programs in              | communities, isolated    | International             |
| appropriate nutrition.  | science capabilities to | collaboration with       | populations through      | partnerships              |
|                         | develop sustainable     | international agencies.  | waste management,        |                           |
|                         | nutrition and           |                          | recycling, water         | Development of space      |
|                         | suitable for space      |                          | purification and         | nutrition laboratories    |
|                         | suitable for space.     | establish research       | bioregenerative          | Successful translation    |
|                         |                         | programs in space        | systems, air filtration, | of technologies to long   |
|                         |                         | nutrition.               | toxin monitoring and     | duration missions, lunar  |
|                         |                         |                          | biosecurity/infection    | and Martian               |
|                         |                         |                          | risk.                    | environments.             |
|                         |                         |                          |                          |                           |
|                         |                         |                          | Agriculture and food     |                           |
|                         |                         |                          | production in            |                           |
|                         |                         |                          | environments             |                           |
|                         |                         |                          | addressing global food   |                           |
|                         |                         |                          | shortages and hunger.    |                           |
| Maintaining astronaut   | Development of space    | Foster international     | Longer shelf life and    | Number of graduates in    |
| health and clinical     | medicine expertise and  | training opportunities   | more effective           | STEM disciplines          |
| management on long      | space medicine          | and exchange programs    | pharmaceuticals,         | relevant to life sciences |

### Report of the Space Health and Life Sciences Working Group

| duration missions, | training, and the       | to develop and            | potential new drug       | demonstrating the      |
|--------------------|-------------------------|---------------------------|--------------------------|------------------------|
| including          | training of physician   | maintain a skilled        | countermeasures for      | impact of education    |
| pharmaceutical use | astronauts.             | workforce.                | radiation protection,    | outreach; numbers of   |
|                    |                         |                           | sleep, immune support,   | Australian medical     |
|                    | Monitoring, diagnostics | Develop tertiary          | bone density,            | specialists            |
|                    | and advanced sensing.   | education programs on     | antimicrobial            | trained/working in     |
|                    | Capability to assist    | space medicine and        | technologies and         | space medicine.        |
|                    | international partners  | health in Australia.      | coatings.                | Retention of graduates |
|                    | monitor and support     |                           |                          | within Australia.      |
|                    | crewed missions.        | Recruit expertise         | The establishment and    | Number of successful   |
|                    |                         | internationally to assist | growth of aerospace      | human missions with    |
|                    | Development of novel    | in establishment.         | medicine as a discipline | Australian input;      |
|                    | and space hardened      |                           | in Australia.            | favourable astronaut   |
|                    | medications.            |                           |                          | health metrics.        |

| Insight                   | Aspiration              | Actions                 | Impacts               | Metrics               |
|---------------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| Australian citizens in    | Foster Australian       | MoUs with               | National pride,       | Missions flown.       |
| space, while historically | astronaut contribution  | international space     | inspiration for STEM  | Increased effective   |
| difficult to achieve and  | to international agency | agencies or commercial  | study and research,   | Australian remote and |
| not prioritized, is       | or commercial missions. | organisations.          | sovereign capability. | extreme generalist    |
| becoming increasingly     |                         | Sovereign space         | Australian research   | healthcare            |
| likely with commercial    |                         | medicine capability for | conducted by          | professionals.        |
| space and the             |                         | astronaut selection and | Australians. Niche    |                       |
| democratization of        |                         | training. Extreme and   | expertise such as     |                       |
| space.                    |                         | space medicine training | medical generalists   |                       |
|                           |                         | program for physicians. | provided to space     |                       |
|                           |                         |                         | programs as skilled   |                       |
|                           |                         |                         | astronaut physicians. |                       |

Niche capabilities that respondents believed Australia could contribute to human spaceflight programs over the next decade are illustrated in Figure 2. Australia's expertise in rural and remote healthcare and telemedicine were commonly reported to be a niche strength.



Figure 2. Australia's niche capabilities.

Figure 3 depicts graphically the number of respondents who identified that their current work may be relevant to key NASA Human Research Roadmap knowledge gaps. Respondents were asked to select as many as applicable. It is evident that Australian expertise covers the entire gamut of key research questions considered important for human space missions. In particular there seems to be an abundance of work that may contribute to knowledge of Human Factors and Behavioural Performance. Australia's unique experience with remote environments – from isolated communities in rural areas to isolated extreme environments in Antarctica - was also evident in the responses, with training of physicians and provision of medical care on exploration missions commonly identified.



NASA HRR Knowledge Gap Mapping

Figure 3. Mapping of respondent expertise to NASA HRR knowledge gaps.

### Recommendations

- **Prioritize funding** for health and life sciences a common theme and clear message from the survey, recognising that returns on this investment in terms of the jobs created and the reduced economic impact of disease in the population are likely to be substantial.
- Establish a Virtual Institute of Space Health and Life Sciences fostering domestic and global multidisciplinary research collaboration, ensuring maximum effective translation of research from space for the benefit of the Australian community. Additional roles include developing human mission and astronaut health support through provision of clinical space medicine. Working side by side with the ASA, it provides a point of liaison and coordination with the biomedical community and international agencies.

- Foster education and training, through the establishment of international exchange programs, tertiary and postgraduate courses, and astronaut physician training. The survey showed that an Australian astronaut with these niche skills contributing to human missions would inspire and galvanise the nation behind the space program.
- Prioritize and grow research in the areas of:
  - **Radiation**, where a significant body of expertise already exists. This capability should be leveraged to help solve a range of key knowledge gaps including cognition, behaviour and health.
  - Microgravity, in particular musculoskeletal and neuro-vestibular physiology, where the biggest population health benefit can be derived from innovation and where dedicated facilities, human centrifuge, head-down bed rest laboratory and parabolic flight would greatly enhance capability.
  - **Life support systems**, photosynthetic bioregenerative environmental systems to provide innovative solutions to problems of agriculture and nutrition, water recycling, microbial countermeasures, and waste management.
  - **Suborbital flight** physiology and safety, spinning-off into a potentially lucrative commercial space tourism market.
- Leverage existing expertise in delivery of healthcare and training for remote/extreme environments to provide medical systems and clinical support to exploration missions. Research and development to support these techniques for space will improve the lives of rural, remote and indigenous Australians.
- **Develop leapfrog telemedicine technologies**, for imaging, patient monitoring and AI diagnostics, with capabilities for clear transmission and analysis of big data for space mission health care, and 21<sup>st</sup> century healthcare of isolated patients on Earth.
- Establish a desert analogue research facility, leveraging an extensive body of work done to date, and capitalising on opportunities presented by international programs (such as AMADEE). Analogue environments exploring the physiology and psychology of isolation and confinement, human factors and psycho-social risks, are key NASA knowledge gap areas with many of our researchers already involved. It was identified by respondents as an important Australian contribution over the next decade and identified as a niche strength.

### **CASE STUDY 1**

*Musculoskeletal conditions were the leading cause of non-fatal disease burden in Australia in 2015, representing 25% of cases<sup>8</sup>. The following case study demonstrates how translation of research from space medicine can significantly improve the economic and social impact of such diseases.* 

### Benefits of Space Medicine Research for Terrestrial Applications in Rehabilitation

Research on astronauts can benefit patients with conditions affecting the neuromusculoskeletal system and vice versa, as both face the challenge of managing the effects of disuse. Deconditioning in astronauts after spaceflight is a useful model for studying interventions for optimal recovery, as changes occur relatively rapidly and without the complication of underlying pathology seen in musculoskeletal and neurological disorders, where the effects of disuse are difficult to isolate. Physical inactivity is a major problem in the general population, despite the well-known benefits of exercise, causing public health and economic concerns in Australia and worldwide.

The effects of microgravity on the cardiovascular, musculoskeletal and neuro-vestibular systems are well documented. Changes in the neuro-musculoskeletal system include bone loss, muscle weakness (particularly postural muscles), reduced muscle mass, impaired motor control and balance and increased risk of lumbar disc pathology. As space missions will involve excursions on planetary surfaces, such as on Mars, challenges to the human body and requirements for effective postflight reconditioning need to be better understood by learning from existing knowledge and further research. For future exploration class missions to other planets, an additional phase of postflight reconditioning will be required following deep space cruise to the destination, to enable safe and effective exploration on a planet's surface. Effective and safe performance during surface planetary excursions on Mars following long duration flights at 0G will require preparation through specific functional exercise programmes on board prior to landing. Optimal reconditioning and preconditioning programmes for long duration missions have yet to be established.

There are three phases of mission cycles requiring the care of a multi-disciplinary medical team: preflight, inflight and postflight. The medical team includes specialists in medicine (flight surgeons), psychology, biomedical engineering, nutrition, physiotherapy and sports science. Implications for rehabilitation of the terrestrial population can be gained from these programs. Drawing on similarities with conditions seen in terrestrial populations may help inform postflight reconditioning, e.g. low back pain, where the distribution of trunk muscle atrophy is similar to that in microgravity. Comparisons have been drawn between the effects of microgravity and ageing, but the greater challenges ahead resulting from longer missions and new environments may benefit from drawing on the challenges and rehabilitation strategies in other terrestrial clinical conditions involving deconditioning, such as neurological conditions and critically ill patients in intensive care. At the other end of the spectrum, reconditioning of astronauts may benefit from adopting physical and psychological strategies for achieving optimal performance in athletes in elite sports. Measures such as astronaut-specific performance testing and movement quality, and motor control strategies to improve these aspects of function, may be of value but require further research.

In summary, translation of knowledge from spaceflight research and practice has implications for several areas of rehabilitation. Insights into space medicine will have more direct relevance, and even become a necessity for some terrestrial clinicians, as space tourism is set to become a reality.

<sup>&</sup>lt;sup>8</sup> Australian Institute of Health and Welfare 2019. Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Australian Burden of Disease series no. 19. Cat. no. BOD 22. Canberra: AIHW.

# **CASE STUDY 2**

### Antarctica as a Space Analogue

The Scientific Committee on Antarctic Research (SCAR) Expert Group on Human Biology and Medicine sets priorities for research on, and healthcare of, humans in Antarctica involving the fields of biomedical sciences, social and behavioural sciences, and medicine. Areas of particular interest include research into the effects of isolation, cold, altitude and light and dark. The use of the Antarctic as a space analogue for human research has been of interest to the international polar medicine community for some time.

Australia's Antarctic Program uses "Life in a Freezer" to offer a hi-fidelity space analogue for Operational Medicine, Training and Research for "ICE" environments – Isolated, Confined and Extreme.

**Isolated:** It can be up to 9 months (March–November) without access to evacuation in the event of an emergency. In addition, there is limited sophistication of medical support.

Confined: small populations of 16–25 expeditioners live together in shared habitats over winter.

**Extreme environment hazards**: Antarctic cold and wind, psychological stressors, 24 hours of polar night, terrain. These hazards are just as life threatening as those found in space and on other celestial bodies.

This challenging environment provides an analogue platform that has enabled Australian research in physiology, epidemiology, behavioural Health and psychology, and photobiology. It has provided clinical and operational medicine and training for extreme environment, and advanced telehealth and other technologies for training and clinical support of isolated populations.