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Summary

• Stable isotope alteration haloes are real 

• Isotope alteration haloes well outside traditional alteration 
vectors, providing larger targets and vectors to ore

• Now have a tool for the job - mineral industry relevant and 
accessible via ALS Minerals - tick the assay form!

• Potential exploration impacts: 

• Near miss? 

• Target ranking (e.g. bigger halo = bigger hydrothermal 
system = more fluid = more ore)? 

• Ground sterilization?

• Vectoring up fluid pathways towards ore?
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Distal Alteration Footprints

Kelley et al, 2006, Econ. Geol.

FIG. 1.  Schematic cross section through a typical porphyry copper deposit showing (A) common primary features that may
be identified within the obvious limits of mineral deposits and (B) primary far field features discussed in the text. Horizon-
tal bars show spatial distributions, which are poorly constrained for far field features. AFT = apatite fission track, BR = bi-
tumen reflectance, CAI = conodont color alteration index, VR = vitrinite reflectance, ZFT = zircon fission track.

Kelley et al, 2006, Econ. Geol.
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What are isotopes?



δ18O for Earth Materials

Hoefs, 2009



What isotope systems?

• Most hydrothermal fluids are very water 
(H2O) rich, so hydrogen and water should 
have most significant isotopic alteration

• Carbon and sulfur may capture important 
redox gradients (Alkalic porphyries - Dave 
Cooke and coworkers, Orogenic gold - 
John Walshe)



Epithermal Au-Ag

Kilometer-scale 
18O halo to the 
General Custer 

Mine.

Criss et al, 1985



Mineralization in Comstock Lode coincident 
with steep gradients in 18O-depletion.

Epithermal Au-Ag
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Stable Isotopes in Mineral Exploration

Noranda Area, Abitibi Belt. Cathles (1993)Noranda Area, Abitibi Belt. Cathles (1993)

VHMS Systems



Carbonate-hosted Pb-Zn
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Carbonate-hosted ore deposits
Pb-Zn-Ag Skarn, Kamioka, Japan

discovery hole

contours of whole rock 
carbonate δ18O

Naito et al. (1995)

known
mineralization

• Carbonate-hosted 
ore bodies often have 
subtle visual and 
lithogeochemical 
alteration

• Carbonate-hosted 
ore deposits are 
particularly suited for 
isotopic analysis - large 
signals, easiest analytical 
approach



The old way......
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The inXitu iX-T “Terra” is the first truly portable XRD system 
designed specifically for rock and mineral analysis. Now 
“field work” can really be done in the field. Terra can be 
configured with everything you need to acquire and analyze 
diffraction data in a rugged compact case. With our pat-
ented sample handling system not only is sample prepara-
tion time minimized but accuracy in peak identification pre-
viously only available using laboratory based systems can 
be achieved. 
 
XRD is the technique of choice for accurate identification 
of minerals. XRD data from Terra can be readily ana-
lyzed using the software of a laboratory XRD instrument, or 
third party applications like Jade (MDI), XPowder, Match! 
(Crystal Impact), CrystalSleuth (Univ. of Arizona), 
etc. Identification of phases also requires the use of a li-
brary such as the ICDD Powder Diffraction Files or the 
American Mineralogist Crystal Structure Databases. 

Terra XRD two-theta display Terra XRF energy spectrum 

The iX-T “Terra” operates off software embedded in the unit itself.  The user accesses the operating system through a 
wireless connection (802.11 b/g).  This unique method of operation allows for a wide degree of flexibility in controlling 
the instrument and subsequent data handling 

+,(-)./'%"#0)1%2!33()4-!,5%6%"#0)1%7/8,('94'54'%

inXitu Inc.  2251 Casey Ave, Ste A, Mountain View, CA 94043 USA Tel (650) 567 0081 FAX (650) 567 0082 
www.inXitu.com  email: Sales @inXitu.com 



There have been advances in light stable isotope 
analysis that are based on infrared absorption laser 

spectroscopy.







Barker et al, Analytical Chemistry, vol 83, pp 2220-2226



Long Canyon Gold Deposit, Nevada
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Will Lepore, MSc Thesis, 2012

Use of different sampling 
scales and materials to 
evaluate hydrothermal 
fluid flow pathways and 

alteration haloes 

Carbonate-rock hosted 
gold deposit



Hand sampling vs pulps
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• Spatial correlation is strong between pulp and hand samples

• Distal - Fluid flow becomes isolated to highly permeable beds

• Pulps become background, individual hand samples still altered
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Case study - isotopic alteration around Carlin-type gold 
deposits, northern Carlin Trend, Nevada

Vaughan, 2013 PhD Thesis



Significant gold intercepts

Most distal 
drilling available



Background
Altered





~ 1 km ~ 500 m ~ 500 m ~ 500 m
Barker et al, Economic Geology, 2013, vol. 108 pp 1-8

> 2 km halo laterally  around mineralization
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Au

~ 1 km ~ 500 m ~ 500 m ~ 500 m
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• Stable isotope alteration haloes are real (lots of case studies) - strong 
theoretical understanding from 60 years of academic research

• Isotope alteration haloes well outside traditional alteration vectors, 
providing larger targets and potential vectors to ore

• Now have a tool for the job - mineral industry relevant

• Substantial case studies still required to determine best practice, 
where most value can be extracted for exploration

• Potential exploration impacts: 

• Near miss? 

• Target ranking (e.g. bigger halo = bigger hydrothermal system = 
more fluid = more ore)? 

• Ground sterilization?

• Vectoring up fluid pathways towards ore?

Conclusions



• Approach appears to have value in carbonate-hosted deposits - 
but what about the rest? - literature says useful, but methods 
lacking - S, O, H not yet available

• Potential to look at propylitic alteration that involves formation 
of secondary carbonate minerals (see work of Kyser group in 
South America on porphyry deposits)

• Orogenic gold?? Not many case studies relevant to exploration.

• Work just beginning on applying similar technology at U of 
Waikato to analyze O and H in O-H-bearing minerals (relevant 
to epithermal, porphyry, orogenic?).

• Emphasis on fast, cheap and easy - relevant cost and utility for 
industry

The next step(s)?


