References

Akbari, O. S., Bellen, H. J., Bier, E., Bullock, S. L., Burt, A., Church, G. M., . . . Wildonger, J. (2015). Safeguarding gene drive experiments in the laboratory. Science, 349(6251), 927-929. doi:10.1126/science.aac7932

Beeman, R. W., Friesen, K. S., & Denell, R. E. (1992). Maternal-effect selfish genes in flour beetles. Science, 256(5053), 89-92.

Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., . . . Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. doi:10.1038/nature12060

Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society B: Biological Sciences, 270(1518), 921-928. doi:10.1098/rspb.2002.2319

Burt, A. (2014). Heritable strategies for controlling insect vectors of disease. Phil. Trans. R. Soc. B. 369. 20130432. doi.org/10.1098/rstb.2013.0432

Champer, J., Buchman, A., & Akbari, O. S. (2016). Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet, 17(3), 146-159. doi:10.1038/nrg.2015.34

Cocquet, J., Ellis, P. J. I., Mahadevaiah, S. K., Affara, N. A., Vaiman, D., & Burgoyne, P. S. (2012). A Genetic Basis for a Postmeiotic X Versus Y Chromosome Intragenomic Conflict in the Mouse. PLoS Genet, 8(9), e1002900. doi:10.1371/journal.pgen.1002900

Curtis, C. F. (1968). Possible use of translocations to fix desirable genes in insect pest populations. Nature, 218(5139), 368-369.

Department of Industry, I., Science and Research. (2010). Inspiring Australia: A National Strategy for Engagement with the Sciences. Canberra: Commonwealth of Australia.

DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M., & Church, G. M. (2015). Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol, 33(12), 1250-1255. doi:10.1038/nbt.3412

Dutcher, J. D. (2007), A Review of Resurgence and Replacement Causing Pest Outbreaks in IPM, in Cianco, A., & Mukerji, K. G. (eds), General concepts in integrated pest and disease management, Integrated management of plants pests and diseases, vol. 1. Dordrecht: Springer.

Egelie, K. J., Graff, G. D., Strand, S. P., & Johansen, B. (2016). The emerging patent landscape of CRISPR-Cas gene editing technology. Nat Biotech, 34(10), 1025-1031. doi:10.1038/nbt.3692

Esvelt, K. M., Smidler, A. L., Catteruccia, F., Church, G. M. (2014). Emerging Technology: Concerning RNA-guided gene drives for the alteration of wild populations. eLife 2014;3:e03401. doi:10.7554/eLife.03401

Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., . . . Yano, M. (2015). Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep, 5, 7773. doi:10.1038/srep07773

Gantz, V. M., & Bier, E. (2015). Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science, 348(6233), 442-444. doi:10.1126/science.aaa5945

Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., & James, A. A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 112(49), E6736-E6743. doi:10.1073/pnas.1521077112

Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., . . . Nolan, T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotech, 34(1), 78-83. doi:10.1038/nbt.3439

Hindmarsh, R. (2008). Edging towards BioUtopia: A New Politics of Reordering Life and Democratic Challenge. Crawley: University of Western Australia Press.

Hoffmann, A. A., Montgomery, B. L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P. H., Muzzi, F., . . . O'Neill, S. L. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476(7361), 454-457. doi:10.1038/nature10356

Kolopack PA, Parsons JA, Lavery JV (2015) What Makes Community Engagement Effective?: Lessons from the Eliminate Dengue Program in Queensland Australia. PLoS Negl Trop Dis 9(4): e0003713. doi:10.1371/journal.pntd.0003713

Laughnan, J. R., & Gabay-Laughnan, S. (1983). Cytoplasmic Male Sterility in Maize. Annual Review of Genetics, 17(1), 27-48. doi:doi:10.1146/annurev.ge.17.120183.000331

Lea, E. (2005). Beliefs About Genetically Modified Foods: A Qualitative and Quantitative Exploration. Ecology of Food and Nutrition, 44(6), 437-454. doi:10.1080/03670240500348789

McDermott, S. R., & Noor, M. A. F. (2010). The role of meiotic drive in hybrid male sterility. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544), 1265-1272. doi:10.1098/rstb.2009.0264

National Academies of Sciences, Engineering, and Medicine. (2016a) Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. Washington, DC: The National Academies Press, 2016. doi:10.17226/23405.

National Academies of Sciences, Engineering, and Medicine. (2016b). Genetically Engineered Crops: Experiences and Prospects. Washington, DC: The National Academies Press. doi: 10.17226/23395.

Nguyen, T. H., Nguyen, H. L., Nguyen, T. Y., Vu, S. N., Tran, N. D., Le, T. N., . . . Hoffmann, A. A. (2015). Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasites & Vectors, 8, 563. doi:10.1186/s13071-015-1174-x

Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol, 34(1), 77-88. doi:10.3109/07388551.2013.823595

Noble, C., Min, J., Olejarz, J., Buchthal, J., Chavez, A., Smidler, A. L., . . . Esvelt, K. M. (2016). Daisy-chain gene drives for the alteration of local populations. bioRxiv. doi:10.1101/057307

Nuffield Council on Bioethics. (2016). Genome editing: an ethical review. http://nuffieldbioethics.org/wp-content/uploads/Genome-editing-an-ethical-review.pdf (Accessed February 2017).  

Oye, K. A., Esvelt, K., Appleton, E., Catteruccia, F., Church, G., Kuiken, T., . . . Collins, J. P. (2014). Biotechnology. Regulating gene drives. Science, 345(6197), 626-628. doi:10.1126/science.1254287

Paull, J. (2015). GMOs and organic agriculture: Six lessons from Australia. Poljoprivreda i Sumarstvo, 61(1), 7.

Reeves, R. G., Bryk, J., Altrock, P. M., Denton, J. A., & Reed, F. A. (2014). First Steps towards Underdominant Genetic Transformation of Insect Populations. PLoS ONE, 9(5), e97557. doi:10.1371/journal.pone.0097557

Rubin, G. M., & Spradling, A. C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science, 218(4570), 348-353.

Schibeci, R., & Harwood, J. (2007). Stimulating authentic community involvement in biotechnology policy in Australia. Public Understanding of Science, 16(2), 245-255. doi:10.1177/0963662506067909

Secretariat of the Convention on Biological Diversity (2015). Synthetic biology, Montreal, Technical Series No. 82.

Sinkins, S. P., & Gould, F. (2006). Gene drive systems for insect disease vectors. Nat Rev Genet, 7(6), 427-435.

Thai, H. N., Malone, J., Boutsalis, P., Preston, C., & Eldershaw, V. (2012). Glyphosate resistance in barnyard grass (Echinochloa colona). Paper presented at the Proceedings of the 18th Australasian Weeds Conference. Melbourne, Australia: Weed Society of Victoria.

Thresher, R. E. (2008). Autocidal technology for the control of invasive fish. Fisheries, 33(3), 114-121.

Umina, P. A., Edwards, O., Carson, P., Van Rooyen, A., Anderson, A. (2014). High levels of resistance to carbamate and pyrethroid chemicals widespread in Australian Myzus Persicae (Hemiptera aphididae) populations. J Economic Entomology, 107 (4) 1626-1638.

Unckless, R. L., Clark, A. G., Messer, P. W. (2017). Evolution of Resistance Against CRISPR/Cas9 Gene Drive. Genetics Early online January 25, 2017; doi: 10.1534/genetics.116.197285

Waltz, E. (2016). CRISPR-edited crops free to enter market, skip regulation. Nat Biotech, 34(6), 582-582. doi:10.1038/nbt0616-582

Whitten, M. (1971). Insect control by genetic manipulation of natural populations. Science, 171(3972), 682-684.

WHO. 2014. The Guidance Framework for Testing Genetically Modified Mosquitoes. World Health Organization, Programme for Research and Training in Tropical Diseases. http://www.who.int/tdr/publications/year/2014/guide-fmrk-gm-mosquit/en/ (Accessed February 2017).

© 2024 Australian Academy of Science

Top