View Dr Keith Boardman's photo gallery
You can order the DVD from the Academy for $15 (including GST and postage)
Dr Keith Boardman was interviewed in 1999 for the Australian Academy of Science's '100 Years of Australian Science' project funded by the National Council for the Centenary of Federation. This project is part of the Interviews with Australian scientists program. By viewing the interviews in this series, or reading the transcripts and extracts, your students can begin to appreciate Australia's contribution to the growth of scientific knowledge.
The following summary of Boardman's career sets the context for the extract chosen for these teachers notes. The extract covers his time at the CSIRO Division of Plant Industry where he pursued his main research interests – chlorophyll and photosynthesis. Use the focus questions that accompany the extract to promote discussion among your students.
Keith Boardman was born in Geelong Victoria in 1926. He attended Geelong High School for 5 years then did a year at Melbourne Boys High School. He was awarded a Dafydd Lewis Scholarship to study chemistry at the University of Melbourne, receiving an MSc in 1949 for his thesis on the properties and thermodynamics of molten salt mixtures.
He worked at CSIRO for 2 years where he attempted to shrinkproof wool, then went to Cambridge University in 1951 to work on the separation of proteins by ion-exchange chromatography. He received an ICI postdoctoral fellowship to continue his work on the separation of proteins. He received a PhD and an ScD in biochemistry from Cambridge University.
In 1956, Boardman returned to Australia to the CSIRO Division of Plant Industry in Canberra to set up their chromatography facilities. Here he investigated protochlorophyll and its conversion to chlorophyll. His work with Dr Jan Anderson characterised the chlorophyll complexes sufficiently to show that the two photochemical systems of photosynthesis were physically separated. Boardman was also interested in the structure and development of chloroplasts in green plants. In 1964, as a Fullbright scholar at the University of California at Los Angeles, he prepared chloroplasts and achieved cell-free synthesis of chloroplast proteins.
Boardman's research interests included the adaptation of plants to their light environment. In the 1960s and 1970s he was involved in characterising the photochemical systems and looking at how the photosystems and photochemical activity developed during greening. He also carried out studies on the comparative photosynthesis of sun and shade plants.
Boardman was a member of the Executive of CSIRO between 1977 and 1985. He became chairman and chief executive in 1985 and chief executive in 1987 after the separation of the two positions.
Boardman was awarded the David Syme Research Prize by the University of Melbourne in 1967 and the Lemberg Medal of the Australian Biochemical Society in 1969. He became a Fellow of the Australian Academy of Science in 1972, a Fellow of the Royal Society of London in 1978 and a Fellow of the Australian Academy of Technological Sciences and Engineering in 1986. He was awarded an honorary DSc by the University of Newcastle in 1988, and was made an Officer of the Order of Australia in 1993.
A good critical mass in photosynthesis research
Interviewer: What led you to return to Australia, to CSIRO Plant Industry?
I had resigned from CSIRO Wool Research after I was awarded the ICI fellowship; I didn’t want to come back at that stage. But during my post-doc the lab had played some cricket matches with University College, London. One member of their team being John Falk, who had worked there for several years on porphyrins. He had been appointed to head the biochemistry section of the Division of Plant Industry. Subsequently he came to Cambridge and said he would like to offer me a job in Canberra to set up their chromatography facilities but he had to consult the Chief, Otto Frankel, to see if a position was available. (The Executive of the day still had a pool of positions which they handed out at their discretion.) Knowing the persuasive power of Otto, I believe he didn’t have a great deal of trouble in getting the position.
So this was an opportunity to get you into chlorophyll protein complexes?
Yes, that’s right. I came back and set up chromatography facilities fairly quickly, and then, with the experience in the haemoglobins – and with John Falk's interest in porphyrins, and also with Rudi Lemberg, in Sydney, having developed quite a school in haem pigments – I decided to investigate chlorophyll complexes.
Soon after I arrived, a paper from the Carnegie Institute in Stanford, California, reported the isolation of a soluble protochlorophyll complex from dark-grown bean leaves. I thought, ‘If that’s soluble, I’ll see whether I can purify it.’ So I developed the purification procedure, including density electrophoresis – but in order to be able to assay this protein you had to prepare it in weak green light. Protochlorophyll is converted to chlorophyll in red light; it is a porphyrin going to a chlorin. So I had to set up a whole lab, black it out, put in weak green lights, do the whole purification, and then illuminate the protochlorophyll protein complex in a spectrophotometer and follow the kinetics of the conversion. The kinetics were a little complicated too. They were interpreted in terms of the structure of the hydrogen donor in relation to the protochlorophyll, which needs two hydrogens to go to chlorophyll. I was not able at that time to identify the donor.
That work extended over quite a few years, Keith. Who were your colleagues?
The colleague for the work on the protochlorophyll was myself. But after that I went back to the chlorophyll-protein complexes, where the real rewards were. I was then treasurer of the newly formed Australian Biochemical Society and the secretary was Fred Collins, a lipid biochemist at the John Curtin School. I told him, ‘I’m trying to separate these chlorophyll complexes but you’ve got to use detergents. When I use the normal anionic or cationic detergents I don’t get the properties of the chlorophyll as it is in the leaf.’ He suggested that I try a natural detergent called digitonin, which had been used very successfully to separate the rods containing the retinin from the eye, with the pigment in a natural state. Sure enough, digitonin didn’t wreck the chlorophyll system, and on doing a differential centrifugation I found fractions with different chlorophyll a:b ratios.
An enormous contribution to that advance and to working out what was happening came from the fact that I was working in a biochemistry department with a good critical mass, with colleagues working on projects which were different but had related techniques. For instance, Don Spencer and John Possingham were working on nutrition of plants – they wanted to work out the role of manganese and how it was related to photosynthesis. So they had set up the methods for looking at the electron transport in different parts of the photosynthetic chain. Cyril Appleby had worked on his PhD in Melbourne with Bob Morton, who worked on cytochromes. He persuaded the Division to buy a Cary spectrophotometer to look at cytochromes, so it was ready to go when I had the fractions with different chlorophyll a:b ratios, first of all to look at the photochemical reactions but then to look at their composition. And John David had the analytical methods set up for all the trace elements, so he was able to analyse the fractions for relevant trace elements.
The Cary spectrophotometer had to be adapted. We had highly scattering samples. No-one else could determine the cytochromes in green material: the scattering was too great, the chlorophyll absorbed much of the light. But with the help of our good workshop and Cyril Appleby’s contribution, we made an attachment for the Cary which let us do the spectra of scattering materials. Also, we developed a liquid nitrogen attachment for determining spectra at liquid nitrogen temperature. This led to discoveries about the cytochromes which people said we couldn’t do with all that chlorophyll there. (Others were extracting the chlorophyll with acetone and other solvents and destroying the native chlorophyll-protein complexes.)
Then Jan Anderson came on board, soon after I had done the first experiments. She was a tremendous colleague. We characterised the chlorophyll-containing fractions to convince the world that there was a separation of the photosystems.
Focus questions
Select activities that are most appropriate for your lesson plan or add your own. You can also encourage students to identify key issues in the preceding extract and devise their own questions or topics for discussion.
© 2025 Australian Academy of Science