Teachers' notes—Dr Sally Stewart-Wade, plant pathologist

Dr Sally Stewart-Wade

Contents

Introduction

Dr Sally Stewart-Wade was interviewed in 2001 for the Interviews with Australian scientists series. By viewing the interviews in this series, or reading the transcripts and extracts, your students can begin to appreciate Australia's contribution to the growth of scientific knowledge.

The following summary of Stewart-Wade's career sets the context for the extract chosen for these teachers notes. The extract covers some aspects of the research she conducted in Canada together with her current research in Australia. Use the focus questions that accompany the extract to promote discussion among your students.

Summary of career

Sally Stewart-Wade was born in 1969 in Melbourne. She completed a Bachelor of Applied Science in Applied Biology (Hons) from the Royal Melbourne Institute of Technology (RMIT) in 1991, for which she studied a fungal disease of the genus Grevillea. She continued on at RMIT and in 1995 completed her PhD on the biological control of the weed thornapple. During her studies she was awarded an Australian postgraduate research award and a Rural Industries Research and Development Corporation scholarship.

In 1994-96 Stewart-Wade worked as a plant pathologist for the then Department of Agriculture, Victoria, where she investigated epidemiological and control aspects of fungal disease of chestnuts.

From 1996-1999 Stewart-Wade was at the University of Guelph, in Ontario, Canada, as a postdoctoral fellow. As part of a large collaborative team, she researched biological control methods for broadleaf weeds, in particular dandelions.

In 2000 Stewart-Wade was appointed to her present position as research fellow in the Department of Agriculture and Food Systems in the Institute of Land and Food Resources at the University of Melbourne. She is developing programs for research into diseases of potato and canola. She is also doing some teaching and is involved in management aspects of the department.

Extract from interview

Collaborating in Canada on broadleaf weed control

You then travelled to Canada. Why was that?

I was enjoying the project at the Department of Agriculture, but I really wanted to continue research into the biological control of weeds, so I applied for a postdoctoral position at the University of Guelph, in Ontario. The job was actually advertised on the internet and I was interviewed by email, which in the mid‑’90s was unusual. I was successful and went to Canada for three years.

This was quite a large collaborative project on biological control of broadleaf weeds, mainly focusing on dandelion. (It was an easy project to explain to people: ‘I’m trying to control those weeds in your backyard that have the yellow flowers and the white heads.’) There were many groups involved – three university groups, large industry groups, and also a government organisation.

I notice that your publications are all collaborative ones. Do you work in collaboration because your work dictates it, or because you enjoy it?

It’s a bit of both. Mostly the work dictates it. It is very rare in my field to have a publication all by yourself – you’re usually working in collaboration with others. The increased involvement of industry in science, too, leads to collaborative papers. But at the same time, I enjoy sharing ideas, bouncing ideas off other people.

Does this have something to do with the multidisciplinarity of your subject?

I guess so. I think the best way is to take a holistic, multidisciplinary approach, looking at a problem from all angles. And when you have different people, with different backgrounds and experience, involved in a project, that’s when you get some good answers.

After your work in Canada you went travelling for another year.

Yes. I was offered a job in Orange, New South Wales, to work on biological control of weeds after my postdoc dandelion work. It was a very tough decision whether to take that job and come home straightaway, or to travel for a year. But it was only a one-year contract position, without a lot of security, and travelling won out. I thought, ‘Well, I’m already halfway round the world. Before I head home, I may as well see some of it.’ And I have no regrets at all. I travelled for about five months in North and South America and then about three and a half months in Europe. It was wonderful.

Potato and canola disease research

What are you working on now?

I have two research projects at present. One is in conjunction with scientists at the Institute for Horticultural Development, in the Department of Natural Resources [formerly the Department of Agriculture], where I worked before I went to Canada. We are looking at silver scurf, a fungal blemish disease of potatoes that just causes a mark on their skin but is a big problem in the industry. The project is mainly focusing on finding out more about the fungus and how it spreads from one tuber to another, and also how it survives in the soil or perhaps on other plant material to infect in the next year.

In the other project I am looking at the disease resistance of canola-quality Brassica lines. Brassica species are used to make canola oil and other products, and they are resistant to various fungal diseases, including blackleg (a big industry problem). But the industry is not sure if these Brassica lines are resistant to other fungal diseases such as Sclerotinia stem rot and Alternaria blackspot, both of which are becoming more important. So that is what I am looking at.

Commercial partners in science

Has your work ever been funded by large corporations, such as biotech companies?

There were actually three commercial partners in the project that I was working on in Ontario, the biological control of dandelions. They put in about half the money for the project, and the government of Canada put in the other half. Since I've returned to Melbourne there has been some interest in my PhD work, as I mentioned, so that a commercial sponsor – based in New South Wales – is involved in trying to get the fungus on the market as a product.

A lot of research, especially in my field, is funded by industry, and that’s probably going to continue for a while. I guess generally the government has cut back and industry has stepped in, and funding opportunities where you have matching money – half from industry and half from government – are very common.

Does he who pays the piper, call the tune?

Does this influence the type of research you do, and whether you can publish it?

Industry involvement does make a difference to the type of research. If they’re providing the money, you can expect them usually to want answers to specific questions, and to a certain extent they do drive the direction of the research project. You have to be able to strike a balance as to how much input they have. As long as you are making sure that the science is good, then that’s all that counts.

As to publishing: most of the work I did at the University of Guelph was under confidentiality agreements, because the commercial partners really wanted to get a product on the market, something that they could sell to control dandelions and other broadleaf weeds. Basically you had to keep a secret, which was kind of exciting and you felt you were working on something important. But it did preclude any publications at the time, and that was a bit frustrating. Those confidentiality agreements are just starting to wind down now, so I am able to start to publish some work.

Did it worry you to be working under such conditions?

No, except that it might hurt my career as a scientist, because a good scientist has to publish. But I think that was outweighed at the time by the importance of the work – and I felt that anybody in that field would know that when you have industry partners involved, you often have to work under confidentiality agreements. It’s the nature of many aspects of science these days.

Focus questions

  • How might biological control of weeds work? What advantages or disadvantages do you think it could have compared to other kinds of weed control?
  • What is a confidentiality agreement and why do you think such agreements are in place?

Activities

Select activities that are most appropriate for your lesson plan or add your own. You can also encourage students to identify key issues in the preceding extract and devise their own questions or topics for discussion.

  • From local council or state agricultural resources, students obtain a list of noxious weeds in their area. Students select one of the weeds and using library or internet resources find out about that weed and any control regimes in place. They present their findings as a brief report.
  • Students select an agricultural crop of commercial importance to their local or state area and use library and internet resources to find out any effects of plant diseases on these crops and how the diseases are presently being controlled by industry. They present their findings as a brief oral or Powerpoint presentation.
  • Ring around plant diversity (Wildscape, Gould League, Australia)
    Activity for student groups to investigate the diversity of plant cover in their school environment. They use simple mathematics to estimate weed and other plant cover.
  • Biological control of water hyacinth in Papua New Guinea (AusAID, Australia)
    Case study of how an overseas aid project uses biological methods to control an introduced plant. Site contains links for teachers notes and student activities.
  • Water molds (American Phytopathological Society, USA)
    Students are introduced to Oomycetes, a group of soil and water organisms, some of which are the cause of important plant diseases. Site includes background material, lesson plan, diagrams and references for further information.

Keywords

  • biological control
  • broadleaf weeds
  • collaborative projects
  • confidentiality agreement
  • fungal disease
  • plant pathology
  • weeds

© 2024 Australian Academy of Science

Top