Teachers' notes - Professor Neville Fletcher, physicist

Professor Neville Fletcher

Contents

View Professor Neville Fletcher's photo gallery
You can order the DVD from the Academy for $15 (including GST and postage)


Introduction

Professor Neville Fletcher was interviewed in 1999 for the Australian Academy of Science's '100 Years of Australian Science' project funded by the National Council for the Centenary of Federation. This project is part of the Interviews with Australian scientists program. By viewing the interviews in this series, or reading the transcripts and extracts, your students can begin to appreciate Australia's contribution to the growth of scientific knowledge.

The following summary of Fletcher's career sets the context for the extract chosen for these teachers notes. The extract highlights his interest in ice surfaces and his involvement with music, both personally and scientifically. Use the focus questions that accompany the extract to promote discussion among your students.

Summary of career

Neville Fletcher was born in Armidale, NSW in 1930. He was educated at Armidale Demonstration School (1935-41) and at Armidale High School (1942-46). He attended New England University College, which was part of Sydney University, receiving a BSc in 1951. Fletcher then went to Harvard University where he gained a PhD in 1955 for his research on impurity levels in semiconductors.

Fletcher returned to Australia in 1956 to work in the Radiophysics Division of CSIRO. Initially he worked on transistors, but then his focus changed to research on cloud physics.

After 4 years at CSIRO, Fletcher moved to the University of New England where he was a senior lecturer in physics (1960-63) and then professor of physics (1963-83). Here his research interests included musical acoustics and studies on the physics of ice and water.

In 1983 Fletcher was appointed director of CSIRO's Institute of Physical Sciences, a position he held until 1987. When he completed his term as director, he remained at CSIRO as a chief research scientist until 1995.

Fletcher is the author of several books, including The Physics of Rainclouds (1962), The Chemical Physics of Ice (1970),The Physics of Musical Instruments (1991) and Acoustic Systems in Biology (1992). His awards include the University Medal in Physics (Sydney University, 1951), the Lyle Medal (Australian Academy of Science, 1993) and the Silver Medal in Musical Acoustics (Acoustical Society of America, 1998).

Fletcher became a Fellow of the Australian Academy of Science in 1976 and a Fellow of the Australian Academy of Technological Sciences and Engineering in 1987. He was awarded a DSc by the University of Sydney in 1973 and was made a Member of the Order of Australia for service to science, particularly in the field of applied physics, in 1990.

Back to top


Extract from interview

Beware slippery ice!

Interviewer: Changing career, you went back to Armidale.

That’s right. I applied to ANU for a senior lectureship that had been advertised, and came up for an interview. One of the people I had asked to be a referee was Jack Somerville, at the University of New England. (The university college had become a full-fledged university in 1954.) He wrote a reference but at the same time he sent me a job offer for a position which had been advertised but not yet filled. So I went up to Armidale in 1960 – nominally to be a senior lecturer in theoretical physics, but with a free hand in just what I would do. I haven’t ever regretted my decision to go there.

The university still had only about 300 or 400 internal students, but it had a very large number of external students doing Arts – though not Science – degrees by correspondence. It was the first university in Australia to have such a distance learning arrangement, which had been a condition of its establishment. A new physics building started being built soon after I got there, to replace a big science building that fortunately, perhaps, burnt down. It had been built just after the war with the Commonwealth reconstruction training scheme as a horrible corrugated fibro, two-storeys-and-a-basement thing, similar to one still being used at Sydney University.

I did a little bit for the arcs and sparks people but basically I wanted to follow up some things which I had found out about ice as a solid-state material but which I hadn’t really had time for at CSIRO. The ice research began to build up and after a year or two I put in for a grant from the US National Science Foundation. I had been interested in the surface of ice, which is funny – you can ski on it, you can skate on it, it’s sort of slippery, whereas you can’t ski and skate on sand, for example. Like Michael Faraday I thought ice surfaces had a liquid layer on them, and I worked out a theory for just why, from the molecular thermodynamics point of view, an ice crystal ought to have a liquid layer at a temperature below the freezing point. I worked out also how thick it ought to be: only 10 to 100 molecular layers, just enough to make a difference. Having thought of some ways that one could investigate that experimentally, I applied to the National Science Foundation as about the only place you might get money, and I got enough money to appoint a research fellow and have a PhD student working on the project.

When I got this grant, the local newspaper asked me what it was about, so I said, ‘Well, now, ice is a funny sort of substance: it’s slippery on the surface. I’m interested in investigating this slippery layer.’ The little thing that appeared in the local paper got picked up with a bigger slab in the Sydney papers, because it was unusual to get money from America in those days, and ‘slippery ice’ was kind of interesting. Then someone sent me a clipping from an American newspaper that had picked it up: ‘I see that the National Science Foundation have given some clown in Australia $10,000 to tell them why ice is slippery. For one quarter of that amount, I’m willing to tell them why water is wet.’ I learnt that you have to be a bit careful what you say to the media!

Interests and excitement in musical acoustics

You did most of your science at the University of New England, including work on the physics of music. Would you tell us about that?

In 1966, after quite a long time in Armidale working on solid-state physics I got a grant from the Australian Research Grants Committee (which later became the Australian Research Council) for more work on ice. Then I broadened that to ice and related materials, a reasonably big program in which I suppose half a dozen people did PhDs with me. That initial grant was made in the ARGC’s first year of operation, and I had either one or two grants from them throughout the whole of the time I was at New England, which was very nice of them.

ARGC/ARC will support anything if you can persuade them that it is worth doing, you are able to do it, and it is interesting and exciting. I managed to persuade them that there were some interesting and exciting things to do in musical acoustics, and that I was the right person to do them. So in 1972 I got a grant from ARGC to start doing some work in musical acoustics, particularly organ pipes. People had been building organs for maybe 2000 years – the Romans had things about like that – yet when you looked at it carefully you still didn’t know exactly how an organ pipe worked, just how it produced the sound. And if you really know how, say, an organ pipe works, that means if someone gives you the dimensions of it and tells you how hard you are blowing it, you ought to be able to calculate what it will sound like. If you can’t do that, you don’t really understand it. So the objective was to find out in detail how these things worked.

That expanded to organ pipes, flutes, other sorts of musical instruments, and again it turned out to be something that students were interested in. I had four students who did PhDs in musical acoustics. You might say, ‘What’s the use of a PhD in that field? There aren’t many jobs in that.’ And that’s true, but all these people have found jobs in which they have used the general sort of classical physics that you get in musical acoustics. Suszanne Thwaites is in charge of the acoustics section at National Measurement Laboratory; John Martin, in Queensland, is in charge of technology for the Education Department; and Kathy Legge is a senior lecturer in instrumentation at La Trobe University, in Bendigo. Only Richard Parncutt has kept on in the field, continuing his psycho-acoustics at an English university.

That is how I started doing musical acoustics, and I have gone on doing it. I have gone on doing some things about solid-state physics too, even some things about ice, keeping all these trails going a little bit, but for the last 10 or 15 years most of my interest has been in various aspects of acoustics. It had the slight advantage, when I left New England to go to CSIRO, that it was the sort of thing that I could do in such spare time as I had on the weekends, unlike something that involved a lot of lab work.

Focus questions

  • In this extract, Fletcher relates a story about how his research was described in a newspaper article. Do you think that scientists have to be very careful about what they say to the press? Does this affect the 'popularising' of science?
  • Fletcher makes the point that study of an 'impractical' subject like musical acoustics can lead to an interesting career in physics that may have little relation to the field of study. Why can this be true of the study of many branches of basic science?

Back to top


Activities

Select activities that are most appropriate for your lesson plan or add your own. You can also encourage students to identify key issues in the preceding extract and devise their own questions or topics for discussion.

  • Fletcher's career involved him in different areas of science. Give some examples of techniques developed in one area of science that have become essential in quite a different area.
  • Illinois Institute of Technology Smile Program, USA
  • How guitars work (How Stuff Works, USA)
    A small demonstration of amplifying and a lot of information on how guitars make music.

Back to top


Keywords

  • ice crystal
  • molecular layers
  • musical acoustics

Back to top

© 2024 Australian Academy of Science

Top